Neutrinos and Dark Matter in Nuclear Physics 2015 (NDM15) June 1-5, 2015, Jyväskylä, Finland

Nuclear Weak Processes in Astrophysics studied with Secondary Particle Beams Tatsushi Shima

Research Center for Nuclear Physics, Osaka University

- Neutrino-induced nuclear reactions
- μ-capture
- Neutron β-decay
- Summary

1. Neutrino-induced nuclear reactions

- Neutrino-heating in core-collapse supernovae; target; n, p, ⁴He, ³He, ³H, ...
- Neutrino-process; post-processing on r-isotopes (heavy nuclei) production of ⁷Li, ¹¹B
- Detection efficiencies of neutrino detectors; d, ¹²C, ^{16,18}O, ³⁷Cl, ⁷¹Ga, ¹⁰⁰Mo, ¹⁷⁶Yb, etc.

Accuracy of ~10% is required for v-A reaction data.

How to determine v-A reaction rates ?

- Direct method → absolute, integrated σ
 Neutrino beam experiment; absolute, J^π≤ 4[±]
 Beta decay (inverse reaction); up to E_{ex} < Q_β
 Muon capture (inverse reaction); |q|~100MeV
- Indirect method → spectroscopic, applicable to RI
 Photobreakup, Coulomb dissociation, (e,e'), (p,p')
 → Neutral current (N.C.)
 Charge-exchange reactions; (p,n), (³He,t), etc.
 - \rightarrow Charged current (C.C.)

Summary of direct measurements

Reaction	Method	Accuracy
d(v _e ,e⁻), d(v,v′)	Solar v, reactor, 3 H- β	~2%
¹² C(v _e ,e⁻)	Real-time meas.	~15%
¹² C(v _e ,v _e)	Real-time meas.	~30%
¹³ C(v _e ,e⁻)	Real-time meas.	76%
⁵⁶ Fe(v _e ,e⁻)	Real-time meas.	37%
⁷¹ Ga(v _e ,e⁻)	Radiochemical	11%
¹²⁷ I(v _e ,e ⁻)	Radiochemical	33%

¹²C+v ; Experiment vs. Theory

	(v _e ,e⁻) ¹² N _{g.s.}	(v _e ,e ⁻) ¹² N*	β ⁻ [¹² B(1+)]	$[(\overline{\nu}_{e}, \overline{\nu}_{e}') + (\nu_{\mu}, \nu_{\mu}')]^{12} N_{g.s.}$	$(v_{\mu}, v_{\mu}')^{12}C^{*}$	β ⁺ (EC) [¹² N(1 ⁺)]
KARMEN[1]	9.1 ±0.5±0.8	5.1 ±0.6±0.5	23.6 ms	10.4 ±1.0±0.9	3.2 ±0.5±0.4	11.0 ms
LSND [2]	8.9 ±0.3±0.9	4.3 ±0.4±0.6				
QRPA [3]	11.53	6.1	21.33 ms	9.92	3.60	10.34 ms
SM [4]	9.06~8.48	5.22~4.87		9.76~8.27	2.68~2.26	
CRPA [5]	8.9	5.4		10.5		

*Cross sections are given in unit of 10⁻⁴² cm².

[1] B.E. Bodmann et al., Phys. Lett. B332, 251 (1994) R. Maschuw, Prog. Part. Nucl. Phys. 40, 183 (1998)
[2] L.B. Auerbach et al., Phys. Rev. C64, 065501 (2001)
[3] M.-K. Cheoun et al., Phys. Rev. C81, 028501 (2010)
[4] T. Suzuki et al., Phys. Rev. C74, 034307 (2006)
[5] E. Kolbe et al., J. Phys, G29, 2569 (2003) Overall accuracy ~20%

Heavy element; ¹²⁷I(v_e,e⁻)¹²⁷Xe

- Close to the second peak in r-process nucleosynthesis
- Data by neutrino-activation method available;
 - $<\sigma>=(2.84\pm0.91(stat)\pm0.25(syst))\times10^{-40} cm^{2}$

(J.R. Distel et al., PRC68, 054613 (2003))

- Calculations; $<\sigma>= (2.1-3.1) \times 10^{-40} \text{ cm}^2$ (Engel et al., PRC50, 1702 (1994)) $4.2 \times 10^{-40} \text{ cm}^2$ (Kosmas & Oset, PRC53, 1409 (1996))
- Contained in inorganic scintillator materials; NaI, CsI, LiI
 Proposed as solar-v detector (W.C. Haxton 1988)

¹²⁷I(v_e,e⁻)¹²⁷Xe cross section measurement at LAMPF (v-activation method)

J.R. Distel et al., Phys. Rev. C68, 054613 (2003)

Target; 1540kg ¹²⁷I (NaI solution) $\Phi_{\rm v}$ vs ¹²⁷Xe rate v-flux; $(3.4 \sim 4.6) \times 10^7$ /cm²/s ²⁷Xe production rate (atoms/d) Fitted slope = 0.179 ± 0.057 70 Cross section = $[2.84 \pm 0.91 \text{ (stat)}] \times 10^{-40} \text{ cm}^2$ Total exposure; 4.41×10^{14} vs 60 127 Xe(EC) \rightarrow 127 I (T_{1/2}=36.4d) 50 Signal; Auger e⁻ (4.7keV) 40 & γ (203keV, 375keV) 10 20 30 60 40 50 0 Effective neutrino flux $F [10^{6}/(\text{cm}^{2} \text{ s})]$

 $<\sigma>=(2.84\pm0.91(stat)\pm0.25(syst))\times10^{-40} \text{ cm}^2$ (33%)

Materials and Life Science Facility

50 GeV

(JAEA)

i-PARD

Linac

J-PAR

Neutrino

Hadron Exp. Facility

M. Harada et al, arXiv:1310.1437 [physics.ins-det]

J-PARC Sterile Neutrino Search using vs from J-PARC Spallation Neutron Source (E56, stage-1 approved)

J-PARC Materials and Life Science Experimental Facility

JSNS²

Energy spectra of decay at rest v

Neutrino beam profile

- Pulse width; 80ns ×2 (double pulses, 540ns interval)
- Repetition rate; 25Hz
- v from decay-at-rest µ ;
 well separated from
 beam pulse
 - \rightarrow low background

Yield estimation; ¹²⁷I(v_e,e⁻)¹²⁷Xe

- $\Phi_v \sim 0.95 \times 10^7$ /cm²/s @L=20m, 1MW
- ¹²⁷I ~4.0×10²⁷ atoms (segmented NaI(TI), 1ton)
- $\epsilon = \epsilon_{det} \times (Live Time) \sim 0.7$
- $\sigma \sim 3 \times 10^{-40} \text{ cm}^2$
- \Rightarrow Signal rate $\sim 8.0 \times 10^{-6}$ /s = 115 /y (4000h)

Major background ; high-E neutrons making electrons inside NaI via $n+A \rightarrow \pi^-+X, \pi^- \rightarrow \mu^- \rightarrow e^-$

500kg detector for BG study

- Main scintillators; (provided by RCNP/LEPS2)
 - □ 24 scintillators in total. (~500kg)
 - □ 4 scintillators / layer and 6 layers
 - 2 Narrower (central part)
 - \Box 2 Wider (in edge sides)
 - Each scintillator has 4 PMTs, and 2 PMTs / one side
- Inner cosmic veto (yellow)
 - 4.3cm thick PL scintillators
 - One side readout.
 - □ Rejection Efficiency $> \sim 99.5\%$
- Outer cosmic veto (blue)
 - PLs are used to surround main part.
 - Size; 1m x 1m or 1m x 2.3m,
 1cm (t)
 >99.8% (total)

Beam-related background

S. Ajimura et al., to be appeared in PTEP, doi; 10.1093/ptep/ptv078

 \rightarrow Michel e- < 1.3×10⁻⁵ /s/MW

S/N ratio & Statistics

- $\Phi_v \sim 0.95 \times 10^7 \,/\text{cm}^2/\text{s}$ @L=20m, 1MW
- ¹²⁷I ~4.0×10²⁷ atoms (segmented NaI(Tl), 1ton)
- $\epsilon = \epsilon_{det} \times$ (Live Time) ~ 0.7
- $\sigma \sim 3 \times 10^{-40} \text{ cm}^2$
- \Rightarrow Signal rate ~ 8.0 × 10⁻⁶ /s = 115 /y (4000h)

 \Leftrightarrow BG rate = 262 /y

Stat. error ~22% with 1yr measurement

JSNS² collaboration

S. Ajimura¹, T.J.C. Bezerra², E. Chauveau², T. Enomoto², H. Furuta², M. Harada³, S. Hasegawa³, T. Hiraiwa¹, Y. Igarashi⁴, E. Iwai⁴, T. Maruyama⁴, S. Meigo³, T. Nakano¹, M. Niiyama⁵, K. Nishikawa⁴, M. Nomachi¹, R. Ohta⁴, H. Sakai², K. Sakai³, S. Sakamoto³, T. Shima¹, F. Suekane², S.Y. Suzuki⁴, K. Suzuya³, and K. Tauchi⁴

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN
 ²Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, JAPAN
 ³J-PARC Center, JAEA, Tokai, Ibaraki JAPAN
 ⁴High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN
 ⁵Department of Physics, Kyoto University, Kyoto, JAPAN

2. μ-capture experiment @J-PARC/MUSE

Muon-target station

Off-line γ -ray spectrum (^{nat}Nb target, 20mg/cm²)

 $\Phi_{\mu} \sim 10^6$ /s, exposure time = 50 min.

⁹³Nb target 10⁰ just after irradiation 90m 10 Count Rate [/keV/s] ⁸⁷Y₉₁mY ⁸⁹Zr ⁹²Υ ⁹⁵∨ 10⁻² 90m 10⁻³ 10⁻⁴ 10⁻⁵ 400 800 1200 0 E_{γ} [keV]

Decay curves of yttrium from $Zr(\mu^{-},\nu_{e}+xn)$

Zr impurity in Nb metal; 1~10ppm (typical)

 \Leftrightarrow 10¹⁶ zirconium atoms

Target with much smaller quantity can be measured with more intense μ^{-} beam and ultra low-BG detector.

RCNP/MuSIC High-intensity **DC** muon source

Stopped μ^- rate ~10⁸ /s@400W --- comparable to J-PARC/MUSE@1MW

3. Neutron β-decay

Life time τ_n ; key parameter to BBN, especially for ⁴He
 Asymmetry λ ; bare g_V, g_A

NIST experiment J.S.Nico et al., PRC71, 055502 (2005)

Present method

--- simultaneous measurement of neutron beta-decay and ³He(n,p)³H with the same detector (Time-Projection Chamber)

J-PARC/MLF/BL05

Y. Arimoto et al., Prog. Theor. Exp. Phys. 02B007 (2012)

TPC data; comparison with MC simulation

Error budget (preliminary)

(* under consideration.)

Error source	Correction	Uncertainty
Statistics		20 sec
³ He density		4 sec
Temperature distribution	O(1) sec	O(1) sec
³ He(n,p) ³ H cross section		1.1 sec
β- ³ He(n,p) ³ H pile up	-3 sec	*
Analysis efficiency	-39 sec	*
Contam. of ³ He(n,p) ³ H	~0.3 sec	*
Contam. of ¹⁴ N(n,p) ¹⁴ C	-8.6 sec	0.6 sec
Contam. of ¹⁷ O(n,α) ¹⁴ C	-4.3 sec	0.2 sec
BG from scattering in TPC	*	*
BG from Spin Flip Chopper	< 4 sec (*)	< 4 sec (*)

NOP collaboration

(Neutron Optics and Physics)

R. Katayama¹, N. Higashi¹, K. Hirota², T. Ino³, Y. Iwashita⁴, M. Kitaguchi²,
R. Kitahara⁶, K. Mishima³, N. Nagakura¹, H. Oide⁷, H. Otono⁸, R. Sakakibara²,
Y. Seki⁹, T. Shima¹⁰, H.M. Shimizu², T. Sugino², N. Sumi¹¹, H. Sumino⁵,
K. Taketani³, G. Tanaka¹¹, T. Tomita¹¹, T. Yamada², S. Yamashita¹², M. Yokohashi²,
H. Yokoyama² and T. Yoshioka⁷

¹Department of Physics, The University of Tokyo ²Department of Physics, Nagoya University ³High Energy Accelerator Research Organization (KEK) ⁴Institute for Chemical Research, Kyoto University ⁵Department of Basic Science, The University of Tokyo ⁶Department of Physics, Kyoto University ⁷European Organization for Nuclear Research (CERN) ⁸Research Center for Advanced Particle Physics (RCAPP), Kyushu University ⁹Nuclear Professional School, School of Engineering, The University of Tokyo ¹⁰*Research Center for Nuclear Physics, Osaka University* ¹¹Department of Physics, Kyushu University ¹²International Center for Elementary Particle Physics, University of Tokyo

Summary

Experimental studies of nuclear weak responses with high-intensity secondary particle beams are in progress;

- Direct measurement of v-A reaction rates with DAR v; JSNS² (sterile) has been approved as E56 exp.(stage-1). We will include v+¹²C and v+¹²⁷I in future.
- High-intensity μ sources; J-PARC/MUSE (pulse) and RCNP/MuSIC (DC) provide new opportunity to study μ-capture by rare stable isotopes and RI (,hopefully).
- J-PARC/MLF will start 1MW operation in next April to deliver world brightest slow neutrons. It will improve statistical and systematic accuracies in neutron lifetime measurement.

LAR HAS A UNIQUE SENSITIVITY TO THE ELECTRON NEUTRINO COMPONENT OF THE SN FLUX

Neutrino flux

	RAL/ISIS	LAMPF	SNS	J-PARC/MLF
l _p [mA]	0.2	1	1~1.4	0.333
E _p [GeV]	0.8	0.8	1	3
π+/proton	0.065	0.065	0.11	0.455
Φ _v @20m [10 ⁶ /cm²/s]	1.1	5.5	9.4~13	12.8

Yield estimation; ²³Na(v_e,e⁻)²³Mg

- $\sigma \sim 2 \times 10^{-41} \text{ cm}^2$ W.E. Ormand et al., Phys. Lett. B308, 207 (1993)
- \Rightarrow Signal rate ~ 0.53 × 10⁻⁶ /s = 7.7 /y (4000h)
- $\Leftrightarrow {}^{127}I(v_e,e){}^{127}Xe \text{ signal rate} = 115 /y$

Detector

Gd-loaded Liq. Scintillator or water Cherenkov, 25ton \times 2, detecting

Asymmetry λ

Simultaneous measurement

of neutron β-decay and ³He(n,p)³H with the same detector (Time-Projection Chamber)

$$\tau_n^{-1} = \frac{N_e / \varepsilon_e}{N_p / \varepsilon_p} \rho_{^{3}He} \sigma_{^{3}He} (v_0) v_0$$

- N_e , N_p : Count rate of β and proton
- $\epsilon_{e}, \epsilon_{p}$: Detection efficiencies
- ρ_{3He} : Atom density of ³He
 - v_0 : Velocity of thermal neutron =2200 m/s
- $\sigma_{3\text{He}}(v_0)$: Cross section of $^3\text{He}(n,p)^3\text{H}$ at 2200m/s, 5333 \pm 7 barn (0.13%)

Details of setup (Time Projection Chamber)

We developed the TPC which has a low background count rate and a high efficiency for β -rays.

Anode wire	29 of W-Au wires(+1750V)
Field wire	28 of Be-Cu (0V)
Cathode wire	120 of Be-Cu (0V)
Drift length	30 cm (-9000V)
Gas mixture	He:CO2=85kPa:15kPa
TPC size(mm)	300,300,970

High efficiency detection for **both of \beta-decay and ³He reaction**

PEEK frame & inner ⁶Li wall suppress BG. S/N ~ 1:1