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We introduce a method for isospin restoration in the calculation of nuclear matrix elements (NMEs) for 0νββ

and 2νββ decay within the framework of the microscopic interacting boson model (IBM-2). With this method, we
calculate the NMEs for all processes of interest in 0νβ−β− and 2νβ−β− and in 0νβ+β+, 0νECβ+, R0νECEC,
2νβ+β+, 2νECβ+, and 2νECEC. With this method, the Fermi matrix elements for 2νββ vanish, and those for
0νββ are considerably reduced.
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I. INTRODUCTION

The question of whether neutrinos are Majorana or Dirac
particles, and of what are their masses and phases in the mixing
matrix, remains one of the most important in physics today. A
direct measurement of the average mass can be obtained from
the observation of the neutrinoless double-β decay (0νββ)

A
ZXN → A

Z±2YN∓2 + 2e∓, (1)

two scenarios of which are shown in Fig. 1.
Several experiments are under way to detect this decay,

and others are in the planning stage (for a review, see, e.g.,
Ref. [1]). The half-life for this decay can be written as[

τ 0ν
1/2

]−1 = G0ν |M0ν |2|f (mi,Uei)|2, (2)

where G0ν is a phase-space factor, M0ν is the nuclear matrix
element, and f (mi,Uei) contains physics beyond the standard
model through the masses mi and the mixing matrix elements
Uei of neutrino species.

Concomitant with the neutrinoless modes, there is also
the process allowed by the standard model, 2νββ, depicted
in Fig. 2. For this process, the half-life can be, to a good
approximation, factorized in the form[

τ 2ν
1/2

]−1 = G2ν |mec
2M2ν |2. (3)

The factorization here is not exact and the conditions under
which it can be done are discussed in Ref. [2].

The processes depicted in Figs. 1 and 2 are of the type

(A,Z) → (A,Z + 2) + 2e− + anything. (4)

In recent years, interest in the process

(A,Z) → (A,Z − 2) + 2e+ + anything (5)

has also arisen. In this case there are also the competing modes
in which either one or two electrons are captured from the
electron cloud (0νECβ, 2νECβ, R0νECEC, 2νECEC). Also
for these modes, the half-life can be factorized (either exactly
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or approximately) into the product of a phase-space factor and
a nuclear matrix element, which then are the crucial ingredients
of any double-β decay calculation.

To extract physics beyond the standard model, contained in
the function f in Eq. (2), we need an accurate calculation of
both G0ν and M0ν . These calculations will serve the purpose
of extracting the neutrino mass 〈mν〉 if 0νββ is observed and
of guiding searches if 0νββ is not observed.

Recently we have started a systematic evaluation of phase-
space factors (PSFs) and nuclear matrix elements (NMEs) for
all processes of interest. The results for NMEs are presented in
Refs. [3–7], and those for PSFs are presented in Refs. [2,7,8].
The calculations for the NMEs have been carried out within
the framework of the microscopic interacting boson model
(IBM-2).

Having completed the calculations in all nuclei of interest,
we have now readdressed them with the purpose of providing
as accurate as possible results. As shown in Table XV of
Ref. [5], the Fermi matrix elements M

(2ν)
F for 2νββ decay in

IBM-2 do not vanish in cases where protons and neutrons
occupy the same major shell. Similarly, the Fermi matrix
elements M

(0ν)
F for 0νββ decay are large when protons and neu-

trons are in the same major shell, as one can see from Table VII
of Ref. [5], where the quantity χF = (gV /gA)2M

(0ν)
F /M

(0ν)
GT is

reported. The same problem with isospin was present in the
quasiparticle random phase approximation (QRPA) both for
QRPA-Tü [9] and QRPA-Jy [10] and it was cured recently [11]
by changing the values of the renormalization constant gT =1

pp ,

which is adjusted in such a way as to make M
(2ν)
F vanish. In this

article, we report on a method similar in spirit, but different
in practice from QRPA, and use it to impose the condition
M

(2ν)
F = 0 in IBM-2. A consequence of the implementation

of this method is that the matrix elements M
(0ν)
F are reduced

and comparable now to those obtained in the interacting shell
model (ISM).

II. FORMALISM

The role of isospin in the IBM was extensively investigated
in the 1980s and 1990s [12–16] and is summarized in the
article “Isospin and F-spin in the Interacting Boson Model” by
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The IBM-2

Nν and Nπ bosons are introduced for 2Nν valence protons and
2Nπ valence neutrons, respectively.
Bosons can be only in two states with positive parity

L = 0 =⇒ s†ν , s
†
π,

L = 2 =⇒ d †ν , d
†
π.

Bosons are allowed to interact with one and two body
interactions.



The IBM-2 Hamiltonian

H = εdπd †π · d̃π + εdνd
†
ν · d̃ν + κQπ · Qν + M + ωππLπ · Lπ

+
1
2

∑
L=0,2,4

c(L)π
(
d †π × d †π

)(L)
·
(
d̃π × d̃π

)(L)
+ ωννLν · Lν

+
1
2

∑
L=0,2,4

c(L)ν
(
d †ν × d †ν

)(L)
·
(
d̃ν × d̃ν

)(L)
+ ωνπLν · Lπ

Qρ = s†ρ d̃ρ + d†ρ s̃ρ + χρ

(
d†ρ × d̃ρ

)(2)
, Lρ =

√
10
(
d†ρ × d̃ρ

)(1)
, ρ = π, ν

M =
1
2
ξ2
(
d†πs
†
ν − d†ν s

†
π

)
·
(
d̃πsν − d̃νsπ

)
−
∑

K=1,3

ξK
(
d†ν × d†ν

)(K)·
(
d̃ν × d̃ν

)(K)



IBM-2 and isospin

For heavy nuclei the valence protons occupy orbits full of
neutrons

T− |ψ〉 = 0⇒ T = |MT |max =
1
2
|N − Z |

For nuclei where protons and neutrons are in the same major
shell, but with different character as particles or holes, isospin
symmetry is violated only of order

1
Ω

For the rest of the cases (lighter nuclei) IBM-2 does not
produce states with definite isospin

=⇒ IBM-3 and IBM-4 are required

Source: J. P. Elliot, Prog. Part. Nucl. Phys. 25, 325 (1990)
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Nuclear Matrix Elements

[
τ
(0ν)
1/2

]−1
= G0ν |M0ν |2 |f (mi ,Uei )|2 ,

[
τ
(2ν)
1/2

]−1
= G2ν

∣∣mec2M2ν
∣∣2 ,

M0ν =
〈
F ; JF

∣∣∣−hF
0ν + hGT

0ν + hT
0ν

∣∣∣ I ; 0+1
〉

M2ν =
〈
F ; JF

∣∣∣−hF
2ν + hGT

2ν

∣∣∣ I ; 0+1
〉

hF ,GT ,T
X = −1

4

∑
απα′

π

∑
ανα′

ν

∑
J

(−1)J GF ,GT ,T
X

(
απα

′
πανα

′
ν ; J
)

√
1 + (−1)Jδαπα′

π

√
1 + (−1)Jδανα′

ν(
π†απ
× π†α′

π

)(J)
·
(
ν̃αν × ν̃α′

ν

)(J)
αρ = (nρlρjρ) , ρ = ν, π, X = 0ν, 0νh, 2ν

Source: J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009)



A couple of comments

The closure approximation have been avoided in computing 2ν
NMEs in IBM:

N. Yoshida and F. Iachello,
Prog. Theor. Exp. Phys. 2013 043D01

IBM is not restricted to just one major shell: the number of
single particle levels can be extended to include spin-orbit
partners in the formulation.



Two body matrix elements I

GF ,GT ,T
X

(
απα

′
πανα

′
ν ; J
)

=
〈
απα

′
π; JM

∣∣∣hF ,GT ,T
X

∣∣∣ανα′ν ; JM
〉

hF ,GT ,T
X ≡ h(s1,s2,λ)X

=
1
2

∑
n,n′

τ+n τ
+
n′

(
Σ
(s1)
n × Σ

(s2)
n′

)(λ)
· HX (rnn′)C (λ)(Ωnn′),

hF → h(0,0,0)X , hGT → h(1,1,0)X , hT → h(1,1,2)0ν

Σ
(0)
n = 1, Σ

(1)
n = ~σn, C (λ)(Ω) =

√
4π/ (2λ+ 1)Y (λ)(Ω)



Two body matrix elements II

GF ,GT ,T
X (απα

′
πανα

′
ν ; J; J) ≡ G (s1,s2,λ)

X (απα
′
πανα

′
ν ; J; J) =

∑lπ+lν
k1=|lπ−lν |

∑l ′π+l ′ν
k2=|l ′π−l ′ν |

∑kmax
k=kmin

ik1−k2+λk̂2
1 k̂2

2 〈k10 k20 | λ0〉

×(−1)s2+k1

{
k1 s1 k
s2 k2 λ

}
(−1)j ′π+jν+J

{
jπ j ′π J
j ′ν jν k

}

×k̂ ĵπ ĵν


1
2 lπ jπ
1
2 lν jν
s1 k1 k

 k̂ ĵ ′π ĵ ′ν


1
2 l ′π j ′π
1
2 l ′ν j ′ν
s2 k2 k


×
〈1

2

∥∥Σ(s1)
∥∥ 1

2

〉
(−1)−k1 l̂π 〈lπ0 k10 | lν0〉

×
〈1

2

∥∥Σ(s2)
∥∥ 1

2

〉
(−1)−k2 l̂ ′π 〈l ′π0 k20 | l ′ν0〉

× R(s1,s2,λ)
X ,k1,k2

(nπ, lπ, n′π, l
′
π, nν , lν , n

′
ν , l
′
ν) ,



Radial Integrals

R(s1,s2,λ)
X ,k1,k2

(nπ, lπ, n′π, l
′
π, nν , lν , n

′
ν , l
′
ν) =∫ ∞

0
h(s1,s2,λ)X (p) p2dp ×

∫ ∞
0

Rnπ lπ (r1) Rnν lν (r1) jk1 (pr1) r2
1 dr1

×
∫ ∞

0
Rn′

π l ′π (r2) Rn′
ν l ′ν (r2) jk2 (pr2) r2

2 dr2

h(s1,s2,λ)X (p) = vX (p) h̃(s1,s2,λ) (p)︸ ︷︷ ︸
+FNS
+SRC
+HOC

;

vX (p) =


δ(p)
p2 for 2ν

2
π

1
p(p+Ã)

for light 0ν
2
π

1
memp

for heavy 0ν

HOC source: F. Šimkovic et al, Phys. Rev. C 60, 055502 (1999)



The transition operator in IBM-2

hF ,GT ,T
X = hF ,GT ,T

X ,ss s†π · s̃ν + hF ,GT ,T
X ,dd d †π · d̃ν

Expansion coefficients

hF ,GT ,T
X ,ss = −

∑
jπ

∑
jν

GF ,GT ,T
X

(
απα

′
πανα

′
ν ; J = 0

)
A(01)

jπ Ã(01)
jν

hF ,GT ,T
X ,dd = −1

2

∑
jπ j ′π

∑
jν j ′ν

√
1 + δjπ j ′π

√
1 + δjν j ′ν

× GF ,GT ,T
X

(
απα

′
πανα

′
ν ; J = 2

)
B(01)

jπ j ′π
B̃(01)

jν j ′ν



Isospin correction of the transition operator

Monopole term removed

R(s1,s2,λ)
X ,k1,k2

→ R(s1,s2,λ)
X ,k1,k2

− δk10δk20δk0δλ0δαπανδα′
πα

′
ν
R(s1,s2,0)

X ,0,0

Consequences:

MF
2ν ∼ 0 and MF

0ν are strongly reduced

MGT
2ν and MGT ,T

0ν does not change

J. Barea, J. Kotila and F. Iachello, Phys. Rev. C 87, 014315 (2015)
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Fermi NMEs for β−β− (0ν) to the ground state
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NMEs for β−β− (0ν) to the first excited state

48 76 82 96 100 110 116 124 128 130 136 148 150 154 160 198 232 238
0

1

2

3

4

5

6

ÈM
0

Ν
È

New Values
Old Values



Comparison with other approaches
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Conclusions

We have cancelled 2ν Fermi NMEs in those cases where isospin
was broken and the 0ν Fermi NMEs was strongly reduced.
The Gamow-Teller and Tensor NMEs remain with the same
values.
The same effects are present in the NMEs for 0νβ+β+ and
the other channels: {0, 2} νECβ, R0νECEC and 2νECEC .
These effects are less pronounced in the NME for heavy
neutrino exchange.
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High multipoles in the transition operator
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FIG. 4. (Color online) Multipole decomposition of the matrix

element M0ν
F . The results with the old and new parametrizations are

compared. Note the dominant effect for the 0+ multipole and the

relatively small effects for the other multipoles. This is the case of
76Ge.

Source: F. Šimkovic et al, Phys. Rev. C 87, 045501 (2013)
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Short Range Correlations

In momentum space

hF ,GT (p) =
2
π

∫ ∞
0

j0(pr)HF ,GT (r)r2dr

hT (p) =
2
π

∫ ∞
0

j2(pr)HT (r)r2dr

Jastrow function

HF ,GT ,T (r)→ HF ,GT ,T (r)f 2(r)

f (r) = 1− Ce−Ar2 (
1− Br2)



SRC Parametrizations

Name A (fm−2) B (fm−2) C

Miller-Spencer 1.10 0.68 1.00

Argonne 1.59 1.45 0.92

CD-Bonn 1.52 1.88 0.46

Source: F. Šimkovic et al, Phys. Rev. C 79, 055501 (2009)



HOC terms I

h =
∑
n,n′

τ †nτ
†
n′

[
−hF (p) + hGT (p)~σn · ~σn′ + hT (p)Sp

nn′

]
Sp

nn′ = 3 [(~σn · p̂) (~σn′ · p̂)]− ~σn · ~σn′

hF ,GT ,T (p) = v(p)h̃F ,GT ,T (p); v(p) =


2
π

1
p(p+Ã)

for light ν
2
π

1
memp

for heavy ν



HOC terms II

HOC term h̃(p)

h̃F
VV g2

A
g2
V /g

2
A

(1+p2/M2
V )

4

h̃GT
AA g2

A
1

(1+p2/M2
A)

4

h̃GT
AP g2

A

[
−2

3
1

(1+p2/M2
A)

4
p2

p2+m2
π

(
1− m2

π

M2
A

)]
h̃GT
PP g2

A

[
1√
3

1
(1+p2/M2

A)
2

p2

p2+m2
π

(
1− m2

π

M2
A

)]2

h̃GT
MM g2

A

[
2
3

g2
V

g2
A

1
(1+p2/M2

V )
4
κ2
βp2

4m2
p

]
h̃T
AP −hGT

AP
h̃T
PP −hGT

PP
h̃T
MM

1
2hGT

MM



Closure Approximation

Example: M(2ν)
GT

∑
N

〈F |τ+~σ|N〉 〈N |τ+~σ| I 〉
1
2Qββ + mec2 + EN − EI

−→ 〈F |τ+τ+~σ · ~σ| I 〉
1
2Qββ + mec2 + 〈EN〉 − EI



Boson expansion

Boson expansion of the coupled pairs operators

(
π†jπ × π

†
jπ

)(0)
7−→ A(01)

jπ s†π + A(11)
jπ s†π

(
d †πd̃π

)(0)
+ ...(

π†jπ × π
†
j ′π

)(2)
7−→ B(01)

jπ j ′π
d †π

+ B(11)
jπ j ′π

s†π
(
s†πd̃π

)(2)
+ B(12)

jπ j ′π
s†π
(
d †πd̃π

)(2)
+ ...

(ν̃jν × ν̃jν )(0) 7−→ Ã(01)
jν s̃ν + Ã(11)

jν s̃ν
(
d †ν d̃ν

)(0)
+ ...(

ν̃jν × ν̃j ′ν

)(2) 7−→ B̃(01)
jν j ′ν

d̃ν

+ B̃(11)
jν j ′ν

(
d †ν s̃ν

)(2)
s̃ν + B̃(12)

jν j ′ν

(
d †ν d̃ν

)(2)
s̃ν

+ ...



Transition operator in IBM-2

hF ,GT ,T 7−→ hF ,GT ,T
s−s s†π · s̃ν + hF ,GT ,T

d−d d †π · d̃ν

+ hF ,GT ,T
d−dss d †π · d †ν s̃ν s̃ν + hF ,GT ,T

d−dds d †π ·
(
d †ν d̃ν

)(2)
s̃ν

+ hF ,GT ,T
ssd−d s†πs

†
πd̃π · d̃ν + hF ,GT ,T

sdd−d s†π
(
d †πd̃π

)(2)
· d̃ν

+ hF ,GT ,T
ssd−dss s†πs

†
πd̃π · d †ν s̃ν s̃ν

+ hF ,GT ,T
ssd−dds s†πs

†
πd̃π ·

(
d †ν d̃ν

)(2)
s̃ν

+ hF ,GT ,T
sdd−dss s†π

(
d †πd̃π

)(2)
· d †ν s̃ν s̃ν

+ hF ,GT ,T
sdd−dds s†π

(
d †πd̃π

)(2)
·
(
d †ν d̃ν

)(2)
s̃ν

+ ...



Different orders in the boson expansion of the Fermi NME
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S and D pairs

Calculation of αj and βjj ′

S† =
∑

j

αj

√
Ωj

2

(
c†j × c†j

)(0)
, D† =

∑
j≤j′

βjj′
1√

1 + δjj′

(
c†j × c†j′

)(2)
HSDI =

∑
j

εj + ATVSDI

Single particle energies εj taken from spectra of nuclei with
one nucleon of valence
AT fitted to reproduce the 2+1 − 0+gs in nuclei with 2 nucleons
of valence.
αj and βjj ′ are extracted from the lowest 0+ and 2+ states
obtained diagonalizing HSDI .

S. Pittel, P.D. Duval, B.R. Barret, Ann. Phys. 144, 168 (1982).
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