Towards Ab Initio Calculations of Double-Beta Decay Nuclear Matrix Elements

Jason D. Holt

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL J. Engel

M. Horoi

Advances in Ab Initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/**theoretical** effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods Coupled Cluster In-Medium SRG Many-Body Perturbation Theory Self-Consistent Green's Function

3N forces essential for exotic nuclei

Advances in Ab Initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/**theoretical** effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods Coupled Cluster In-Medium SRG Many-Body Perturbation Theory Self-Consistent Green's Function

3N forces essential for exotic nuclei

Improved 0vββ-Decay Calculations in Shell Model

Standard SM approach: phenomenological wavefunctions + **bare** operator Avenue towards ab initio shell-model calculations:

Consistent operators and wfs from chiral forces and currents

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$

$$M_{GT}^{0\nu} = \langle f \rangle \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \tau_a^+ \tau_b^+ |i\rangle$$

1) Wavefunctions currently phenomenological; calculate ab initio IM-SRG, CC, MBPT... Part II

Improved 0vββ-Decay Calculations in Shell Model

Standard SM approach: phenomenological wavefunctions + **bare** operator Avenue towards ab initio shell-model calculations:

Consistent operators and wfs from chiral forces and currents

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \underbrace{\sum_{ab} H(r_{ab}M_{eff} \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle}_{eff}$$

- 1) Wavefunctions currently phenomenological; calculate ab initio
- 2) Effective decay operator: correlations outside valence space

Improved 0vββ-Decay Calculations in Shell Model

Standard SM approach: phenomenological wavefunctions + **bare** operator Avenue towards ab initio shell-model calculations:

Consistent operators and wfs from chiral forces and currents

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g^2_A} + M^{0\nu}_T$$

$$M_{GT}^{0\nu} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle$$

- 1) Wavefunctions currently phenomenological; calculate ab initio
- 2) Effective decay operator: correlations outside valence space
- 3) Operator corrections: two-body currents

See talks of Menéndez, Gazit, Schwenk

Calculations of Effective Operators (MBPT)

Effective 0vββ-Decay Operator

Standard approach: phenomenological wavefunctions + **bare** operator Calculate *consistent effective* $0\nu\beta\beta$ -decay operator using MBPT Diagrammatically similar: replace one interaction vertex with $M_{0\nu}$ operator

Effective 0vββ-Decay Operator

Standard approach: phenomenological wavefunctions + **bare** operator Calculate *consistent effective* $0\nu\beta\beta$ -decay operator using MBPT Diagrammatically similar: replace one interaction vertex with $M_{0\nu}$ operator

Low-momentum interactions: Improve convergence behavior?

Effective 0vββ-Decay Operator

Calculate in MBPT:

$$\frac{1}{1} \operatorname{st} \operatorname{order} (\times 2)$$

$$2^{\operatorname{nd}} \operatorname{order} (\times 3)$$

Calculations of $M_{0\nu}$ in ⁴⁸Ca, ⁷⁶Ge, and ⁸²Se

Phenomenological wavefunctions from A. Poves, M. Horoi

⁴⁸ Ca	Bare	0.77	⁷⁶ Ge	Bare	3.12	⁸² Se	Bare	2.73
	Effective	1.30		Effective	3.77		Effective	3.62

Converged in 13 major oscillator shells No order-by-order convergence in MBPT Lincoln, JDH et al., PRL (2013) JDH and Engel, PRC (2013) Kwiatkowski, et al., PRC (2014)

Overall ~25-30% increase for ⁷⁶Ge, ⁸²Se; 75% for ⁴⁸Ca

Calculations of $M_{0\nu}$ in ⁴⁸Ca, ⁷⁶Ge, and ⁸²Se

Phenomenological wavefunctions from A. Poves, M. Horoi

⁴⁸ Ca	Bare	0.77	⁷⁶ Ge	Bare	3.12	⁸² Se	Bare	2.73
	Effective	1.30		Effective	3.77		Effective	3.62

Converged in 13 major oscillator shells No order-by-order convergence in MBPT Lincoln, JDH et al., PRL (2013) JDH and Engel, PRC (2013) Kwiatkowski, et al., PRC (2014)

Overall ~25-30% increase for ⁷⁶Ge, ⁸²Se; 75% for ⁴⁸Ca

Promising first steps – up next...

- Consistent wavefunctions and operators in MBPT from chiral NN+3N
- Operator corrections: two-body currents from chiral EFT
- Nonperturbative methods (IM-SRG)
- Effects of induced 3-body operators

Calculations of $M_{0\nu}$ in ⁴⁸Ca, ⁷⁶Ge, and ⁸²Se

Phenomenological wavefunctions from A. Poves, M. Horoi

⁴⁸ Ca	Bare	0.77	⁷⁶ Ge	Bare	3.12	⁸² Se	Bare	2.73
	Effective	1.30		Effective	3.77		Effective	3.62

Converged in 13 major oscillator shells No order-by-order convergence in MBPT Lincoln, JDH et al., PRL (2013) JDH and Engel, PRC (2013) Kwiatkowski, et al., PRC (2014)

Overall ~25-30% increase for ⁷⁶Ge, ⁸²Se; 75% for ⁴⁸Ca

Promising first steps – up next...

- Consistent wavefunctions and operators in MBPT from chiral NN+3N
- Operator corrections: two-body currents from chiral EFT
- Nonperturbative methods (IM-SRG)
- Effects of induced 3-body operators

IM-SRG for Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

In-Medium SRG continuous unitary trans. to decouple off-diagonal physics

 $H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \to H^{d}(\infty)$

Separate *p* states into valence states (*v*) and those above valence space (*q*) Define H^{od} to **decouple valence space from excitations** outside *v*

First nonperturbative construction of valence-space Hamitonians: H_{eff}

Benchmark in Oxygen with MBPT/CCEI

Compare with **Coupled-Cluster** effective interactions from NN+3N forces

Bogner, Hergert, JDH, Schwenk et al., PRL (2014) Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)

Many-Body Perturbation Theory in extended valence space ($sdf_{7/2}p_{3/2}$) **IM-SRG/CCEI** (sd shell) spectra agree within ~300 keV; improved quality

Fully Open Shell: Neutron-Rich Fluorine Spectra

Fluorine spectroscopy: **MBPT** and **IM-SRG** (*sd* shell) from NN+3N forces

IM-SRG: **competitive with phenomenology**, good agreement with data Preliminary results already for scalar operators: charge radii, E0 transitions Upcoming: general operators M1, E2, GT, double-beta decay Stroberg et al.

Effective Operators

Calculate unitary transformation directly

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)} = H + \frac{1}{2} \left[\Omega(s), H \right] + \frac{1}{12} \left[\Omega(s), [\Omega(s), H] \right] + \cdots$$

Straightforward to generalize to arbitrary operators

$$\mathcal{O}^{\Lambda}(s) = e^{\Omega(s)} \mathcal{O}^{\Lambda} e^{-\Omega(s)} = \mathcal{O}^{\Lambda} + \frac{1}{2} \left[\Omega(s), \mathcal{O}^{\Lambda} \right] + \frac{1}{12} \left[\Omega(s), \left[\Omega(s), \mathcal{O}^{\Lambda} \right] \right] + \cdots$$

First apply to scalar operators: charge radii, E0 transitions

Commutators induce important higher-order one-/two-body parts

$$\left(\frac{\partial}{\partial} \right) + \left| \frac{\partial}{\Omega} \right|^{2} + \left| \frac{\partial}{\partial} \right|^{2} + \dots$$

Quantify importance of induced higher-body contributions!

RMS Charge Radii in sd Shell Model

Previous SM radii calculations rely on empirical input or as relative to core Absolute radii for entire sd shell calculated in shell model NN+3N

Stroberg, Bogner, Hergert, JDH, Schwenk, in prep

Benchmarked against NCSM in various SM codes ~10% too small – deficiencies expected to come from initial Hamiltonian **Two-body part important 15-20%**

Path to Full Calculation

Consistent wavefunction and operator SRG-evolved operator Shuster et al.

Improvements in operator

Two-body currents from chiral EFT

Menendez, Gazit, Schwenk, PRL (2011) Ekstrom, Wendt, et al., PRL (2014)

Exotic decay mechanisms Horoi

Heavier candidates accessible to SM

Importance of spin-orbit partners

28

20

Horoi, Brown, PRL (2013)

protons

8

28

20

8

2

Nonperturbative SM wfs/operators

IM-SRG Stroberg, Bogner, Hergert, JDH, Schwenk **CCEI** Jansen, Hagen

Understand origin of quenching in SM

Fully Open Shell: Neutron-Rich Neon Spectra

Neon spectroscopy: **MBPT** and **IM-SRG** (*sd* shell) from NN+3N forces

IM-SRG: **competitive with phenomenology**, good agreement with data Preliminary results already for scalar operators: charge radii, E0 transitions Upcoming: general operators M1, E2, GT, double-beta decay R. Stroberg et al.

θvββ-Decay Operator

Details of operator used in subsequent calculations

Closure approximation good to 8-10% Sen'kov, Horoi, Brown, PRC (2014)

$$\begin{split} M_{0\nu} &= \frac{2R}{\pi g_A^2} \int_0^\infty q \, dq \\ &\times \langle f | \sum_{a,b} \frac{j_0(qr_{ab})[h_F(q) + h_{GT}(q)\vec{\sigma}_a \cdot \vec{\sigma}_b]}{q + \overline{E} - (E_i + E_f)/2} \tau_a^+ \tau_b^+ | i \rangle \\ h_F(q) &\equiv -g_V^2(q^2), \\ h_{GT}(q) &\equiv g_A^2(q^2) - \frac{g_A(q^2)g_P(q^2)q^2}{3m_P} + \frac{g_P^2(q^2)q^4}{12m_P^2} + \frac{g_M^2(q^2)q^2}{6m_P^2} \\ g_V(q^2) &= \frac{1}{[1 + q^2/(0.85 \text{GeV}^2)]^2} \qquad g_P(q^2) = \frac{2m_P g_A(q^2)}{q^2 + m_\pi^2} \\ g_A(q^2) &= \frac{1.27}{[1 + q^2/(1.09 \text{Gev}^2)]^2}, \qquad g_M(q^2) = 3.70 g_V(q^2) \end{split}$$

Nuclear wavefunctions: currently phenomenological – calculate ab initio
 Decay operator: correlations outside valence space; 2-body currents

Calculations of $M_{0\nu}$ in ⁸²Se and ⁷⁶Ge

Phenomenological wavefunctions from A. Poves, M. Horoi ($pf_{5/2}g_{9/2}$ space)

⁷⁶ Ge	Bare matrix element	3.12	⁸² Se	Bare matrix element	2.73
	Full 1 st order	3.11		Full 1 st order	2.79
	Full 2 nd order	3.77		Full 2 nd order	3.62

Converged in 13 major oscillator shells

Lincoln, JDH et al., PRL (2013) [LEBIT]

JDH and Engel, PRC (2013)

Little net effect at 1st order – no clear order-by-order convergence

Overall ~25-30% increase from bare value

Calculations of M_{0v} in ⁴⁸Ca

Phenomenological wavefunctions from GXPF1A (*pf* shell)

⁴⁸ Ca	GT	Fermi	Tensor	Sum
Bare	0.675	0.130	-0.072	0.733
Final	1.211	0.160	-0.070	1.301

Kwiatkowski, JDH, Engel, Horoi et al., PRC (2014)

Converged in 13 major oscillator shells

Similar absolute increase as in Ge, Se – no clear order-by-order convergence

Overall ~75% increase from bare value

Calculations of $M_{0\nu}$ in ⁴⁸Ca

Phenomenological wavefunctions from GXPF1A (*pf* shell)

⁴⁸ Ca	GT	GT Fermi		Sum		
Bare	0.675	0.130	-0.072	0.733		
Final	1.211	0.160	-0.070	1.301		

Kwiatkowski, JDH, Engel, Horoi et al., PRC (2014)

Converged in 13 major oscillator shells

Similar absolute increase as in Ge, Se – no clear order-by-order convergence

Overall ~75% increase from bare value

Promising first steps – up next...

- Consistent wavefunctions and operators in MBPT from chiral NN+3N
- Operator corrections: two-body currents from chiral EFT
- Nonperturbative methods (IM-SRG)
- Effects of induced 3-body operators

Calculations of $M_{0\nu}$ in ⁴⁸Ca

Phenomenological wavefunctions from GXPF1A (*pf* shell)

⁴⁸ Ca	GT	GT Fermi		Sum		
Bare	0.675	0.130	-0.072	0.733		
Final	1.211	0.160	-0.070	1.301		

Kwiatkowski, JDH, Engel, Horoi et al., PRC (2014)

Converged in 13 major oscillator shells

Similar absolute increase as in Ge, Se – no clear order-by-order convergence

Overall ~75% increase from bare value

Promising first steps – up next...

- Consistent wavefunctions and operators in MBPT from chiral NN+3N
- Operator corrections: two-body currents from chiral EFT
- Nonperturbative method for wavefunction and operator (IM-SRG)
- Effects of induced 3-body operators?

Nuclear Matrix Element

Improved calculations move in direction of other methods

Aim: first-principles framework capable of robust prediction

Intermediate-State Convergence

Convergence results in ⁸²Se

Results **well converged** in terms of intermediate state excitations Improvement due to low-momentum interactions Similar trend in ⁷⁶Ge and ⁴⁸Ca **Improvements from SRG-evolved operator?**

SRG Evolution of Operator

Preliminary results with $0\nu\beta\beta$ -decay operator

Schuster, Engel, JDH, Navrátil, Quaglioni

Minimal effects from SRG evolution

Negligible improvements in MBPT convergence?

SRG Evolution of Operator

Preliminary results with $0\nu\beta\beta$ -decay operator

Minimal improvement in intermediate-state convergence

Strategy

1) Effective interaction: sum excitations outside valence space to 3rd order

2) Single-particle energies calculated self-consistently

 \bigstar 3) Harmonic-oscillator basis of 13 major shells: **converged**

4) NN and 3N forces – fully to 3^{rd} -order MBPT

5) Work in extended valence spaces

Clear convergence with HO basis size Promising order-by-order behavior

Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self-consistently
- \bigstar 3) Harmonic-oscillator basis of 13 major shells: **converged**
 - 4) NN and 3N forces fully to 3^{rd} -order MBPT
 - 5) Work in extended valence spaces

G-matrix – no signs of convergence (similar in pf-shell)

Strategy

1) Effective interaction: sum excitations outside valence space to 3rd order

2) Single-particle energies calculated self-consistently

 \bigstar 3) Harmonic-oscillator basis of 13 major shells: **converged**

4) NN and 3N forces – fully to 3^{rd} -order MBPT

5) Work in extended valence spaces

Clear convergence with HO basis size Promising order-by-order behavior

Nonperturbative In-Medium SRG

Tsukiyama, **Bogner**, Schwenk, PRL (2011)

In-Medium SRG continuous unitary trans. drives off-diagonal physics to zero

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \to H^{d}(\infty)$$

From uncorrelated Hartree-Fock ground state (e.g., ¹⁶O) define:

 $H^{\mathrm{od}} = \langle p|H|h\rangle + \langle pp|H|hh\rangle + \dots + \mathrm{h.c.}$

Drives all n-particle n-hole couplings to 0 – decouples core from excitations

IM-SRG: Flow Equation Formulation

Define *U*(*s*) implicitly from particular choice of generator:

 $\eta(s) \equiv (\mathrm{d}U(s)/\mathrm{d}s) U^{\dagger}(s)$

chosen for desired decoupling behavior - e.g.,

 $\eta_{\scriptscriptstyle I}(s) = \left[H^{\rm d}(s), H^{\rm od}(s) \right]_{\rm \ Wegner\ (1994)}$

Solve **flow equation** for Hamiltonian (coupled DEs for 0,1,2-body parts) $\frac{dH(s)}{ds} = [\eta(s), H(s)]$

Hamiltonian and generator truncated at 2-body level: IM-SRG(2)

0-body flow drives uncorrelated ref. state to fully correlated ground state Ab initio method for energies of **closed-shell systems**

IM-SRG: Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

Open-shell systems

Separate *p* states into valence states (v) and those above valence space (q)

Redefine H^{od} to decouple valence space from excitations outside v $H^{\text{od}} = \langle p|H|h \rangle + \langle pp|H|hh \rangle + \langle v|H|q \rangle + \langle pq|H|vv \rangle + \langle pp|H|hv \rangle + \text{h.c.}$

IM-SRG: Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

Open-shell systems

Separate *p* states into valence states (v) and those above valence space (q)

Core physics included consistently (**absolute energies, radii...**) Inherently nonperturbative – no need for extended valence space Non-degenerate valence-space orbitals
IM-SRG Oxygen Ground-State Energies

IM-SRG valence-space interaction and SPEs in *sd* shell

NN+3N-ind modest underbinding, dripline not reproduced NN+3N-full modestly overbound, correct dripline trend Weak $\hbar\omega$ dependence

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces

Agreement between all methods with same input forces

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces

Schwenk, ARNPS (2015)

Agreement between all methods with same input forces

Clear improvement with NN+3N-full

Validates valence-space results

Oxygen Dripline Mechanism

Self-consistent Green's Function with same SRG-evolved NN+3N forces

Robust mechanism driving dripline behavior

3N repulsion raises $d_{3/2}$, lessens decrease across shell Similar to first MBPT NN+3N calculations in oxygen

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and *sd*-shell IM-SRG

Clear improvement with NN+3N-full **IM-SRG**: comparable with phenomenology

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full Continuum neglected: expect to lower $d_{3/2}$

IM-SRG Oxygen Spectra

Oxygen spectra: IM-SRG predictions beyond the dripline

 24 O closed shell (too high 2^+)

Continuum neglected: expect to lower spectrum

Experimental Connection: ²⁶O Spectrum

Oxygen spectra: IM-SRG predictions beyond the dripline

New measurement at RIKEN: excited states in ²⁶O

Existence of excited state 1.3MeV

IM-SRG prediction: one natural-parity state below 7MeV at 1.22MeV

Comparison with MBPT/CCEI Oxygen Spectra

Oxygen spectra: Effective interactions from Coupled-Cluster theory

Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)

MBPT in extended valence space

IM-SRG/CCEI spectra agree within ~300 keV

Experimental Connection: ²⁴F Spectrum

²⁴F spectrum: **IM-SRG** (*sd* shell), **full CC**, **USDB**

New measurements from GANIL

IM-SRG: comparable with phenomenology, good agreement with new data

Fully Open Shell: Neutron-Rich Fluorine Spectra

Fluorine spectra: extended-space MBPT and IM-SRG (sd shell)

MBPT: clear deficiencies

IM-SRG: competitive with phenomenology, good agreement with data

Fully Open Shell: Neutron-Rich Neon Spectra

Neon spectra: extended-space MBPT and IM-SRG (*sd* shell)

MBPT: clear deficiencies

IM-SRG: competitive with phenomenology, good agreement with data

Alternative Approach: Magnus Expansion

Morris, Parzuchowski, Bogner, in prep.

Magnus expansion: *explicitly* construct unitary transformation

 $U(s) = \exp \Omega(s)$

With flow equation:

$$\frac{\mathrm{d}\Omega(s)}{\mathrm{d}s} = \eta(s) + \frac{1}{2} \left[\Omega(s), \eta(s)\right] + \frac{1}{12} \left[\Omega(s), \left[\Omega(s), \eta(s)\right]\right] + \dots$$

Leads to commutator expression for evolved Hamiltonian

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)} = H + \frac{1}{2} \left[\Omega(s), H \right] + \frac{1}{12} \left[\Omega(s), [\Omega(s), H] \right] + \cdots$$

Nested commutator series – in practice truncate numerically

All calculations truncated at normal-ordered two-body level

Prospect for Applications to Double-Beta Decay

Improved 0vββ-Decay Calculations in Shell Model

Avenues towards ab initio shell model calculations Consistent operators and wavefunctions

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \vec{M}_{eff} \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ | i \rangle$$
$$M^{0\nu}_F = \langle f | \sum_{ab} H(r_{bb}) \tau_a^+ \tau_b^+ | i \rangle$$

- 1) Nuclear wavefunctions: currently phenomenological calculate ab initio
- 2) **Effective decay operator**: correlations outside valence space

EO Transitions and Radii

Seldom calculated in nuclear shell model In single HO shell:

$$|\langle f|\rho_{E0}|i\rangle|^2 \propto \delta_{ij}$$
 where $\rho_{E0} = \frac{1}{e^2 R} \sum_i e_i r_i^2$

Must resort to phenomenological gymnastics

IM-SRG: straightforward to calculate effective valence-space operator:

$$\rho_{E0}(s) = e^{\Omega(s)} \rho_{E0} e^{-\Omega(s)} = \rho_{E0} + \frac{1}{2} \left[\Omega(s), \rho_{E0} \right] + \cdots$$

Commutators induce important higher-order and two-body parts

$$\left| \stackrel{}{\mathcal{P}} \right| + \left| \stackrel{}{\Omega} \stackrel{}{\bigcirc} \right| + \left| \stackrel{}{\bigcap} \stackrel{}{\bigcap} \right| + \dots$$

Quantify importance of induced higher-body contributions!

Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods Coupled Cluster (Hagen, Papenbrock, Dean, Roth)
In-Medium SRG (Bogner, Hergert, JDH, Schwenk)
Many-Body Perturbation Theory (JDH, Hjorth-Jensen, Schwenk)
Self-Consistent Green's Function (Barbieri, Soma, Duguet)
3N forces essential for exotic nuclei

Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/**theoretical** effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods Coupled Cluster (Hagen, Papenbrock, Roth)
In-Medium SRG (Bogner, Hergert, JDH, Schwenk, Stroberg)
Many-Body Perturbation Theory (JDH, Hjorth-Jensen, Schwenk)
Self-Consistent Green's Function (Barbieri, Duguet, Soma)
3N forces essential for exotic nuclei

Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods
Coupled Cluster (Hagen, Papenbrock, Dean, Roth)
In-Medium SRG (Bogner, Hergert, JDH, Schwenk)
Many-Body Perturbation Theory (JDH, Hjorth-Jensen, Schwenk)
Self-Consistent Green's Function (Barbieri, Soma, Duguet)
3N forces essential for exotic nuclei

Prospect for Applications to Neutrinoless Double-Beta Decay

82

Fundamental symmetries?

ab initio calculation of $0\nu\beta\beta$ decay

Effective operators for GT, M1, E2

Nuclear Weak Processes: ββ-Decay

Nuclear weak processes: fundamental importance for particle physics

Rare cases when single β -decay is energetically forbidden Can undergo $\beta\beta$ -decay

Second-order weak process

Observed in 15 nuclei with:

$$(T_{1/2}^{2\nu\beta\beta})^{-1} \approx 10^{19} \,\mathrm{y}$$

Fundamental Symmetries: 0vββ-Decay

Assuming exchange of light neutrinos

 $(T_{1/2}^{0\nu\beta\beta})^{-1} = G^{0\nu}(Q_{\beta\beta}, Z)(M^{0\nu})^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2 \quad \langle m_{\beta\beta} \rangle = \left|\sum_{i=1}^3 U_{ei}m_i\right|$

Character of neutrino (Majorana/Dirac) Lepton number violation **Neutrino mass scale**

Nuclear Matrix Element

Recent calculations of NME: pronounced differences for lighter candidates

Shell model: exact correlations in truncated single-particle spaceQRPA, EDF, IBM: schematic correlations in large single-particle spaceAim: first-principles framework capable of robust prediction

Improved 0vββ-Decay Calculations in Shell Model

Avenues towards ab initio shell model calculations Consistent operators and wavefunctions

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \int \sum_{ab} H(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ |i\rangle$$
$$M^{0\nu}_F = \int \sum_{ab} H(r_{ab}) \tau_a^+ \tau_b^+ |i\rangle$$

1) **Nuclear wavefunctions**: currently phenomenological – calculate ab initio

Effective 0vββ-Decay Operator

Calculate in MBPT:

Improved 0vββ-Decay Calculations in Shell Model

Avenues towards ab initio shell model calculations Consistent operators and wavefunctions

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \vec{M}_{eff} \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ | i \rangle$$
$$M^{0\nu}_F = \langle f | \sum_{ab} H(r_{bb}) \tau_a^+ \tau_b^+ | i \rangle$$

- 1) Nuclear wavefunctions: currently phenomenological calculate ab initio
- 2) **Effective decay operator**: correlations outside valence space

Improved 0vββ-Decay Calculations in Shell Model

Avenues towards ab initio shell model calculations Consistent operators and wavefunctions

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \left\langle f \left| \sum_{ab} H(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ \right| i \right\rangle$$
$$M^{0\nu}_F = \left\langle f \left| \sum_{ab} H(r_{ab}) \tau_a^+ \tau_b^+ \right| i \right\rangle$$

- 1) Nuclear wavefunctions: currently phenomenological calculate ab initio
- 2) Effective decay operator: correlations outside valence space
- 3) Improvements in operator: two-body currents

The Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate **valence-space** Hamiltonian inputs from nuclear forces **Interaction matrix elements Single-particle energies (SPEs)**

The Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate **valence-space** Hamiltonian inputs from nuclear forces **Interaction matrix elements Single-particle energies (SPEs)**

Many-Body Perturbation Theory

First calculate **energy dependent** effective interaction

$$\hat{Q}(\omega) = PVP + PVQ\frac{1}{\omega - QHQ}QVP$$

Effects of excitations outside valence space

Approximation: sum $\widehat{Q}(\omega)$ to finite order

Many-Body Perturbation Theory

First calculate **energy dependent** effective interaction

$$\hat{Q}(\omega) = PVP + PVQ\frac{1}{\omega - QHQ}QVP$$

Effects of excitations outside valence space **Approximation**: sum $\hat{Q}(\omega)$ to finite order

Nonperturbative folded diagrams to remove energy dependence

$$V_{\text{eff}}^{(n)} = \widehat{Q} + \sum_{m=1}^{\infty} \frac{1}{m!} \frac{\mathrm{d}^m \widehat{Q}}{\mathrm{d}\omega^m} \left\{ V_{\text{eff}}^{(n-1)} \right\}^m$$

Eigenvalues converge to exact values of A-body Hamiltonian with largest model-space overlap

Perturbative Valence-Space Strategy

- \star 1) Effective interaction: sum excitations outside valence space to 3rd order
 - 2) Single-particle energies calculated self consistently
 - 3) Harmonic-oscillator basis of 13-15 major shells: converged
 - 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
 - 5) Explore extended valence spaces

Perturbative Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- \star 3) Harmonic-oscillator basis of 13-15 major shells: **converged**
 - 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
 - 5) Explore extended valence spaces

Clear convergence with HO basis size Promising order-by-order behavior – compare with ab initio methods

Chiral Effective Field Theory: Nuclear Forces

Nucleons interact via pion exchanges and contact interactions

Consistent treatment of NN, 3N,... 2-body currents

3N couplings fit to properties of light nuclei at low momentum

Improve convergence of many-body methods:

$$V_{{
m low}\,k}$$
 or $V_{{
m SRG}}$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

Perturbative Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13-15 major shells: converged
- \star 4) NN and 3N forces from chiral EFT to 3rd-order MBPT
 - 5) Explore extended valence spaces

NN matrix elements

- Chiral N³LO (Machleidt, $\Lambda_{NN} = 500$ MeV); smooth-regulator $V_{low k}(\Lambda)$

3N force contributions

- Chiral N²LO

c_D, c_E fit to properties of light nuclei with $V_{\text{low }k}$ ($\Lambda = \Lambda_{3N} = 2.0 \text{ fm}^{-1}$)

- Included to 5 major HO shells
Perturbative Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13-15 major shells: converged
- 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
- **★**5) Explore **extended valence spaces**

Philosophy: diagonalize in largest possible valence space (where orbits relevant)

Treats higher orbits nonperturbativelyWhen important for exotic nuclei?Best option for double-beta decay?

Nuclear Wavefunctions: Calcium Isotopes

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort

What are the properties of proton/neutron-rich matter?

50

What are the limits of nuclear existence?

protons

8

2

28

28

neutrons

20

20

8

How do magic numbers form and evolve?

<u>References</u>

- JDH, Otsuka, Schwenk, Suzuki, JPG 39, 085111 (2012)
- Gallant et al., PRL 109, 032506 (2012)
- JDH, Menendez, Schwenk, JPG 40, 075105 (2013)

82

- Wienholtz et al., Nature **486**, 346 (2013)
- JDH, Menendez, Simonis, Schwenk, PRC **90**, 024312 (2014)

Key physics problems:

- Shell evolution through ⁵²Ca, ⁵⁴Ca
- Spectra, transition rates

Calcium Isotopes: Magic Numbers

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Phenomenological Forces

Large gap at ⁴⁸Ca
Discrepancy at N=34

Microscopic NN Theory

Small gap at ⁴⁸Ca

N=28: first standard magic

number not reproduced
in microscopic NN theories

Calcium Ground State Energies and Dripline

Signatures of shell evolution from ground-state energies?

No clear dripline; flat behavior past ⁵⁴Ca – Halos beyond ⁶⁰Ca?

 $S_{2n} = -[BE(N,Z) - BE(N-2,Z)]$ sharp decrease indicates shell closure

Experimental Connection: Mass of 54Ca

New precision mass measurement of ^{53,54}Ca at **ISOLTRAP**: multi-reflection ToF

ISOLTRAP *Measurement* Sharp decrease past ⁵²Ca Unambiguous closed-shell ⁵²Ca Test predictions of various models

MBPT NN+3N

Excellent agreement with new data Reproduces closed-shell ^{48,52}Ca Weak closed sell signature past ⁵⁴Ca

Neutron-Rich Ca Spectra Near N=34

Neutron-rich calcium spectra with NN+3N

JDH, Menendez, Schwenk, JPG (2013) JDH, Menendez, Simonis, Schwenk, PRC (2014) Hagen et al., PRL (2013)

Phenomenology: inconsistent predictions Hag

NN+3N: signature of new *N*=34 magic number (also predicted in CC theory) **Agrees with new measurements from RIKEN**

Steppenbeck et al., Nature (2013)

Transition Rates

Neutron-rich calcium B(E2) rates

JDH, Menendez, Simonis, Schwenk, PRC (2014) Reasonable agreement with experiment – comparable to phenomenology Uses effective charges – need calculated effective operators!

N=28 Magic Number: *M1* Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

 $pfg_{9/2}$ -shell:

3N gives additional concentration Peak close to experimental energy

Supports N=28 magic number

Calculations of Effective Operators

θvββ-Decay Operator

Details of operator used in subsequent calculations

Closure approximation good to 8-10% Sen'kov, Horoi, Brown, PRC (2014)

$$\begin{split} M_{0\nu} &= \frac{2R}{\pi g_A^2} \int_0^\infty q \, dq \\ &\times \langle f | \sum_{a,b} \frac{j_0(qr_{ab})[h_F(q) + h_{GT}(q)\vec{\sigma}_a \cdot \vec{\sigma}_b]}{q + \overline{E} - (E_i + E_f)/2} \tau_a^+ \tau_b^+ | i \rangle \\ h_F(q) &\equiv -g_V^2(q^2), \\ h_{GT}(q) &\equiv g_A^2(q^2) - \frac{g_A(q^2)g_P(q^2)q^2}{3m_P} + \frac{g_P^2(q^2)q^4}{12m_P^2} + \frac{g_M^2(q^2)q^2}{6m_P^2} \\ g_V(q^2) &= \frac{1}{[1 + q^2/(0.85 \text{GeV}^2)]^2} \qquad g_P(q^2) = \frac{2m_P g_A(q^2)}{q^2 + m_\pi^2} \\ g_A(q^2) &= \frac{1.27}{[1 + q^2/(1.09 \text{Gev}^2)]^2}, \qquad g_M(q^2) = 3.70 g_V(q^2) \end{split}$$

Nuclear wavefunctions: currently phenomenological – calculate ab initio
 Decay operator: correlations outside valence space; 2-body currents

Standard approach: phenomenological wavefunctions + **bare** operator Calculate *effective* $0\nu\beta\beta$ -decay operator using MBPT Diagrammatically similar: replace one interaction vertex with $M_{0\nu}$ operator

Standard approach: phenomenological wavefunctions + **bare** operator Calculate *effective* $0\nu\beta\beta$ -decay operator using MBPT Diagrammatically similar: replace one interaction vertex with $M_{0\nu}$ operator

Low-momentum interactions: Improve convergence behavior

Calculate in MBPT:

Calculate in MBPT:

$$\frac{1}{2^{nd}} \stackrel{\text{respective}}{\longrightarrow} \stackrel{\text{respective}}{\longrightarrow} \stackrel{\text{respective}}{\longrightarrow} 1^{\text{st}} \text{ order (× 2)}$$

Calculate in MBPT:

 $\begin{array}{l} Q\text{-box}-\text{sum of interaction diagrams} \\ X\text{-box}-\text{sum of } 0\nu\beta\beta \text{ diagrams} \end{array}$

Intermediate-State Convergence

Convergence results in ⁸²Se

Results **well converged** in terms of intermediate state excitations Improvement due to low-momentum interactions Similar trend in ⁷⁶Ge and ⁴⁸Ca Improvements from SRG-evolved operator?

SRG Evolution of Operator

Promising preliminary results with schematic of $0\nu\beta\beta$ operator

Schuster et al

Full $0\nu\beta\beta$ operator in progress

Forthcoming: test in effective-operator calculations

Calculations of $M_{0\nu}$ in ⁸²Se and ⁷⁶Ge

Phenomenological wavefunctions from A. Poves, M. Horoi ($pf_{5/2}g_{9/2}$ space)

⁷⁶ Ge	Bare matrix element	3.12	⁸² Se	Bare matrix element	2.73
	Full 1 st order	3.11		Full 1 st order	2.79
	Full 2 nd order	3.77		Full 2 nd order	3.62

Converged in 13 major oscillator shells

Lincoln, JDH et al., PRL (2013) [LEBIT] JDH and Engel, PRC (2013)

Little net effect at 1st order

Overall ~25-30% increase from bare value

Calculations of $M_{0\nu}$ in ⁴⁸Ca

Phenomenological wavefunctions from GXPF1A (standard *pf*-shell)

⁴⁸ Ca	GT	Fermi	Tensor	Sum
Bare	0.675	0.130	-0.072	0.733
Final	1.211	0.160	-0.070	1.301

Kwiatkowski, Brunner, JDH et al., PRC (2014)

Converged in 13 major oscillator shells

Little net effect at 1^{st} order – larger effect from 2^{nd} order than in Ge, Se

Overall ~75% increase from bare value

Nuclear Matrix Element

Improved calculations move in direction of other methods

Aim: first-principles framework capable of robust prediction

Calculate in MBPT:

 $\begin{array}{l} Q\text{-box}-\text{sum of interaction diagrams} \\ X\text{-box}-\text{sum of } 0\nu\beta\beta \text{ diagrams} \end{array}$

Quenching of GT Strength

Investigate many-body effects on quenching of g_A

Set of two-body diagrams contributing to renormalization of g_A in $2\nu\beta\beta$ decay: product of 2 single-beta-decay

Quenching of 38% in ⁸²Se ($g_A \sim 1.0$)

Quenching of GT Strength

Investigate many-body effects on quenching of g_A Directly look at one-body effective GT

Use low-momentum interactions and 3N forces

Quenching of GT Strength

Investigate many-body effects on quenching of g_A

Calculate GT transitions in sd- and pf-shells

Transition	NN	NN+3N
$d_{5/2} ightarrow d_{5/2}$	0.899	0.899
$d_{3/2} ightarrow d_{3/2}$	0.894	0.907
$d_{5/2} ightarrow d_{3/2}$	0.852	0.852
$s_{1/2} ightarrow s_{1/2}$	0.855	0.855
$f_{7/2} ightarrow f_{7/2}$	0.853	0.851
$f_{5/2} ightarrow f_{5/2}$	0.823	0.827
$f_{7/2} ightarrow f_{5/2}$	0.799	0.796
$p_{3/2} ightarrow p_{3/2}$	0.829	0.829
$p_{1/2} ightarrow p_{1/2}$	0.895	0.924
$p_{3/2} ightarrow p_{1/2}$	0.815	0.816

Net quenching between 0.8-0.9 Consistent with findings from $2\nu\beta\beta$ decay

Larger quenching when spin-orbit partners absent from valence space

Converged using low-momentum interactions – little effect from 3N

Conclusion/Outlook

- Nuclear structure theory of medium-mass nuclei with 3N forces, extended spaces
- Robust repulsive 3N mechanism for T=1 neutron/proton-rich nuclei
- **Calcium isotopes** in *pf* and *pfg*_{9/2}-shells:
 - Prediction of N=28 magic number in ⁴⁸Ca
 - Shell evolution towards the dripline: small N=34 closure
 - Pairing gaps reflect shell structure higher-order many-body processes essential
 - NN+3N predictions confirmed in new TITAN and ISOLTRAP experiments
- New directions for fundamental symmetries
 - Effective operators for 0vBB decay
 - 30% increase for Ge, Se; 75% increase for ⁴⁸Ca
 - Effective one-body GT: quenching 0.8-0.9
 - Many improvements needed

Path to Full Calculation

82

82

50

Benchmark in 48Ca

Ab initio valence-shell Hamiltonians

Towards full sd- and pf-shells Revisit cross-shell theory

Moving beyond stability

Continuum effects near driplines

Islands of inversion in sd/pf regions Exotic cores

 $\mathbf{28}$

neutrons

20

50

Map driplines in sd region?

protons

8

2

28

20

8

2

Fundamental symmetries

Non-empirical calculation of 0vββ decay Effective electroweak operators WIMP-nucleus scattering

126

Evaluating Center-of-Mass Contamination

Nonperturbative Lee-Suzuki (LS) transformation from extended space

$$H|\psi_{n}\rangle = E_{n}|\psi_{n}\rangle$$

$$PH_{eff}^{LS}P|\phi_{n}\rangle = \varepsilon_{n}P|\phi_{n}\rangle$$

$$\{\varepsilon_{n}\} \subset \{E_{n}\}$$

$$\langle H_{CM}\rangle = 0$$

$$Sd \qquad Sdf_{7/2}P_{3/2}$$

$$P \qquad Q$$

Transform for **two-body** systems (e.g., ¹⁸O, ⁴²Ca) **Extended-space spectrum free of CM contamination**

Project into standard space onto eigenenergies from extended space calculation

Use H_{eff}^{LS} as new two-body Hamiltonian in *sd*-shell valence-space calculations

Calculations of $M_{0\nu}$ in ⁸²Se and ⁷⁶Ge

Calculation of ⁸²Se (phenomenological wavefunctions from A. Poves, M. Horoi)

⁷⁶ Ge	Bare matrix element	3.12	⁸² Se	Bare matrix element	2.73
+	pp, hh ladders (1 st)	5.44	+	pp, hh ladders (1 st)	4.86
+	3p-1h	2.20	+	3p-1h	2.40
+	2 nd -order	4.14	+	2 nd -order	3.92

Large effects cancel at 1st order

JDH and Engel, PRC (2013)

Conclusion/Outlook

• Nuclear structure theory of medium-mass nuclei with 3N forces, extended spaces

Non-empirical valence-space methods

- First calculations based on NN+3N forces
- Extended valence spaces needed
- Cures NN-only failings: dripline, shell evolution, spectra
- Residual 3N forces improve predictions beyond dripline

New directions

- Promising first results for F/Ne ground states to
- Non-perturbative IM-SRG excellent binding energies, spectra in sd shell only!

Large-space ab-initio methods

- Similar improvements with NN+3N as in valence-space methods
- Agreement between methods encouraging for future benchmarking valuable!

Nuclear Matrix Element

$$M_{0v} = M_{0v}^{GT} - \frac{g_V^2}{g_A^2} M_{0v}^F + \cdots$$
$$M_{0v}^{GT} = \left\langle f \left| \sum_{ab} H(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ \right| i \right\rangle \quad M_{0v}^F = \left\langle f \left| \sum_{ab} H(r_{ab}) \tau_a^+ \tau_b^+ \right| i \right\rangle$$

Shell model: arbitrary correlations in truncated single-particle space **QRPA**: simple correlations in large single-particle space

Nuclear Matrix Element

$$M_{0v} = M_{0v}^{GT} - \frac{g_V^2}{g_A^2} M_{0v}^F + \cdots$$

$$M_{0v}^{GT} = \left\langle f \left| \sum_{ab} H(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ \right| i \right\rangle \quad M_{0v}^F = \left\langle f \left| \sum_{ab} H(r_{ab}) \tau_a^+ \tau_b^+ \right| i \right\rangle$$

Shell model: arbitrary correlations in truncated single-particle space

QRPA: simple correlations in large single-particle space

Backup Oxygen

Pairing for Shell Evolution N=28

Peak in pairing gaps: complementary signature for shell closure Compare with 2^+ energies for Ca Agreement with CC throughout chain Hagen et al. PRL (2012)

N=28 strong peak

Pairing for Shell Evolution N=32

Peak in pairing gaps: complementary signature for shell closure Compare with 2^+ energies for Ca Agreement with CC throughout chain Hagen et al. PRL (2012) N=28 strong peak N=32 moderate peak Close to data with new TITAN value Experimental measurement of ⁵³Ca mass needed to reduce uncertainty
Oxygen Isotopes

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort

What are the properties of proton/neutron-rich matter?

What are the limits of nuclear existence?

How do magic numbers form and evolve?

References

82

- Otsuka, Suzuki, JDH, Schwenk, Akaishi PRL 105, 032501 (2010)
- JDH, Menendez, Schwenk, EPJA **49**, 39 (2013)
- Caesar et al. (R3B), Simonis, JDH, Menendez, Schwenk PRC 88, 034313 (2013)
- Bogner, Hergert, JDH, Schwenk et al., PRL, 113, 142501 (2014)

Key physics problems:

- Location of dripline
- Properties of new closed-shell nuclei ^{22,24}O
- Physics beyond the neutron dripline

Limits of Nuclear Existence: Oxygen Anomaly

Limits of Nuclear Existence: Oxygen Anomaly

Mass Number A

Two-Neutron Separation Energies: Mass of 52Ca

Compare with AME2003 data

NN+3N Predictions

Reproduce ⁴⁸Ca shell closure

Predictions too bound past ⁵⁰Ca

3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence-space Hamiltonian

Effective one-body

Effective two-body

Combine with NN (Third Order): no empirical adjustments

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Ground-State Energies of Oxygen Isotopes

Valence-space interaction and SPEs from NN+3N

JDH, Menendez, Schwenk, EPJA (2013)

Repulsive character improves agreement with experiment *sd*-shell results underbound; improved in **extended space**

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ energies reflect ^{22,24}O shell closures

Experimental Connection: Beyond the Dripline

Hoffman, Kanungo, Lunderberg... PRLs (2008+)

Valence-space Hamiltonian from NN + 3N + residual 3N

Repulsion more pronounced for neutron-rich systems: 400 keV at ²⁶O Improved agreement with new data beyond ²⁴O dripline Future: include coupling to continuum

In-Medium SRG: Basics

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRL (2011)

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \rightarrow H^{d}(\infty)$$

Decouples reference state from excitations $\langle npnh | H(\infty) | \Phi_c \rangle = 0$

In-Medium SRG: Basics

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRL (2011)

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \rightarrow H^{d}(\infty)$$

Where U is defined by the generator:

 $\eta(s) \equiv (dU(s)/ds)U^{\dagger}(s)$ chosen for desired decoupling behavior

Taking

$$\eta(s) = \left[H^{d}(s), H(s)\right] = \left[H^{d}(s), H^{od}(s)\right]$$

Drives H^{od} to 0 (Wegner, 1994)

Closed-shell reference state: drives all n-particle n-hole couplings to 0 $\frac{dH(s)}{ds} = \left[\eta(s), H(s)\right] \qquad \langle npnh | H(\infty) | \Phi_c \rangle = 0$

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRC (2012)

Open shell systems:

split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

 $H(s=0) \rightarrow H(\infty)$

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRC (2012)

Open shell systems:

split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

 $H(s = 0) \rightarrow H(\infty)$

Defines new effective valence-space Hamiltonian $H_{\rm eff}$ States outside valence space are decoupled

Nonperturbative Valence-Space Strategy

- 1) Effective interaction: nonperturbative from IM-SRG
- 2) Single-particle energies: nonperturbative from IM-SRG
- 3) Hartree-Fock basis of $e_{\text{max}} = 2n + l = 14$ **converged**
- \star 4) NN and 3N forces from chiral EFT
 - 5) Explore extended valence spaces in progress

NN matrix elements

- Chiral N³LO (Machleidt, Λ_{NN} = 500MeV); free-space SRG evolution
- Cutoff variation $\lambda_{\text{SRG}} = 1.88 2.24 \text{ fm}^{-1}$
- -Vary $\hbar \omega = 20 24 \text{MeV}$
- Consistently include 3N forces induced by SRG evolution (NN+3N-ind)

Initial 3N force contributions

- Chiral N²LO Λ_{3N} = 400MeV (NN+3N-full)
- Included with cut: $e_1+e_2+e_3\leq E_{3\max}=14$

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from IM-SRG in sd shell

NN+3N-induced reproduce exp well, not dripline NN+3N-full modestly overbound – good behavior past dripline Good dripline properties Very weak $\hbar\omega$ dependence

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from IM-SRG in sd shell

NN+3N-induced reproduce exp well, not dripline NN+3N-full modestly overbound – good behavior past dripline Good dripline properties Very weak $\hbar\omega$ dependence

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces

Clear improvement with full NN+3N Confirms valence-space results Remarkable agreement with same forces

Dripline Mechanism

Compare to large-space methods with same SRG-evolved NN+3N forces

Robust mechanism driving dripline behavior

3N repulsion raises $d_{3/2}$, lessens decrease across shell Similar to initial MBPT NN+3N calculations in oxygen

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full IM-SRG: comparable with phenomenology

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full

Continuum neglected: expect to lower $d_{3/2}$

IM-SRG Oxygen Spectra

Oxygen spectra: IM-SRG predictions beyond the dripline

²⁴O closed shell (too high 2^+)

Continuum neglected: expect to lower spectrum Only one excited state in ²⁶O below 6.5MeV

Experimental Connection: ²⁶O Spectrum

Oxygen spectra: IM-SRG predictions beyond the dripline

New measurement at RIKEN on excited states in ²⁶O

Existence of excited state "just over 1.0 MeV" (uncertainty not finalized)

Towards Full sd-Shell with MBPT: Fluorine

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

sd shell filled at 29 F/ 30 Ne

Need extended-space orbits

Towards Full sd-Shell with MBPT: Fluorine

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

NN only: severe overbinding

NN+3N: good experimental agreement through 29 F Sharp increase in ground-state energies beyond 29 F: incorrect dripline

Towards Full sd-Shell with MBPT: Neon

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

Similar behavior in Neon isotopes

Revisit cross-shell valence space theory – **non-degenerate valence spaces** Tsunoda, Hjorth-Jensen, Otsuka IM-SRG energies overbound in F/Ne

Experimental Connection: ²⁴F Spectrum

Fluorine spectra: extended-space MBPT and (sd-shell) IM-SRG

New measurements from GANIL

IM-SRG: comparable with phenomenology in good agreement with new data

²⁵Ne Spectrum

Neon spectra: extended-space MBPT and (sd-shell) IM-SRG

Limited experimental data

IM-SRG: comparable with phenomenology, good agreement with data

Limits of Nuclear Existence: Oxygen Anomaly

Where is the nuclear dripline?

Limits defined as last isotope with positive neutron separation energy

- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to Z=8 (Oxygen)

Single Particle Energies

SPEs **self-consistently** from one-body diagrams

sd-shell: overbound, unreasonable spacing

Orbit	"Exp"	USDb	$T+V_{NN}$ (3 rd)
<i>d</i> _{5/2}	-4.14	-3.93	-5.43
s _{1/2}	-3.27	-3.21	-5.32
d _{3/2}	0.944	2.11	-0.97

Typical approach: use empirical SPEs

3N forces eliminate need for adjusted parameters?

One-Body 3N: Single Particle Energies

NN-only microscopic SPEs yield poor results – rely on empirical adjustments

sd-shell: SPEs much too bound, unreasonable splitting

3N forces: additional repulsion – comparable to phenomenology

Orbit	USDb	$T+V_{NN}+V_{3N}$
<i>d</i> _{5/2}	-3.93	-3.78
s _{1/2}	-3.21	-2.42
<i>d</i> _{3/2}	2.11	1.45

Single-Particle Energies with NN+3N Forces

3N forces: additional repulsion improves SPEs

Orbit a	USDb	$T + V_{\rm NN}$	$T + V_{\rm NN} + V_{\rm 3N}$	SDPF-M	$T + V_{\rm NN} + V_{\rm 3N}$
d _{5/2}	-3.93	-5.43	-3.78	-3.95	-3.46
<i>s</i> _{1/2}	-3.21	-5.32	-2.42	-3.16	-2.20
d _{3/2}	2.11	-0.97	1.45	1.65	1.92
$f_{_{7/2}}$				3.10	3.71
p _{3/2}				3.10	7.72

JDH, Menendez, Schwenk, EPJA (2013)

Similar contributions in standard/extended valence spaces

Comparable with phenomenology

Non-Observability of Shell Gaps

SPE evolution with 3N forces in *sd* and *sdf*_{7/2} $p_{3/2}$ spaces:

NN+3N extended space:

Duguet, Hergert, JDH, Soma, in prep.

No gap at ²²O, yet enhanced closed-shell features (high 2⁺, etc.)

Lee-Suzuki transformation into sd-shell

Usual shell gap emerges at ²²O Similar evolution to USDb Hamiltonian

Two-body 3N: Monopoles in sd-shell

Dominant effect from **one-** Δ – as expected from cutoff variation

3N forces produce clear repulsive shift in monopoles

First calculations to show missing monopole strength due to neglected 3N

Future: Improved treatment of high-lying orbits Treat as holes in ⁴⁰Ca core Continuum effects

Impact on Spectra: ²¹O

Neutron-rich oxygen spectra with NN+3N

Spectrum sensitive to $s_{1/2}$ shell closure

Low-lying states too compressed $7/2^{+}-5/2^{+}$ too wide

Microscopic NN+3N Improvement in sd Extended orbits essential Improved spacing in all

3N improvements largely due to higher calculated $s_{1/2}$ orbital Need proper treatment of non-degenerate spaces

Impact on Spectra: ²²O

Neutron-rich oxygen spectra with NN+3N

²²O: N=14 new magic number – not reproduced with NN

Contributions from 3N and extended valence orbitals important

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ energies reflect ^{22,24}O shell closures

Coupled Cluster Benchmark

Benchmark against ab-initio Coupled-Cluster Theory SPEs: one-particle attached CC energies in ¹⁷O and ⁴¹Ca

Energies relative to ¹⁶O and ⁴⁰Ca Small difference in many-body methods ~5% Explore further benchmarks: NCSM, IM-SRG...

IM-SRG vs. MBPT: Monopoles

Monopoles: angular average of interaction

Determines interaction of orbit a with b; evolution of orbital energies

Similar trends in MBPT/IM-SRG – attractive shift in IM-SRG

Promising trends for IM-SRG in HF basis using intrinsic Hamiltonian

Perturbative vs. Nonperturbative SPEs

3N forces: additional repulsion improves SPEs

Orbit	USDb	MBPT NN	MBPT NN+3N	IM-SRG NN	IM-SRG NN+3N-ind	IM-SRG NN+3N-full	
d _{5/2}	-3.93	-5.43	-3.78	-7.90	-3.77	-4.62	
s _{1/2}	-3.21	-5.32	-2.42	-6.87	-2.46	-2.96	
d _{3/2}	2.11	-0.97	1.45	1.41	2.33	3.17	

JDH, Menendez, Schwenk, EPJA (2013) Bogner et al., PRL (2014)

Similar contributions in standard/extended valence spaces

Comparable with phenomenology

Towards Full sd-Shell: Fluorine

Next challenge: valence protons + neutrons

Explore physics of neutron-rich fluorine and neon isotopes

Prediction of unbound ^{28,30}F

Agrees well with phenomenology

$(2^{29}T)$	SDPF-U	NN+3N	AME 2011		
$S_n(2^{\circ}F)$	-451 keV	-458 keV	-419 keV		

JDH, Menendez, Schwenk, in prep.

Non-Degenerate Valence Space Theory

Strong non-Hermiticity (or divergence) for non-degenerate valence space:

Idea: replace starting energy with arbitrary parameter $\omega = PH_0P \rightarrow E$

In both cases: $\frac{1}{E - (\varepsilon_c + \varepsilon_p + \varepsilon_b - \varepsilon_h)}$ avoids divergence and non-Hermiticity

Final results should not depend on E – true when folded diagrams are calculated

Required for use of Hartree-Fock basis

Test calculations show **more attractive cross-shell monopoles** Lower $f_{7/2} p_{3/2}$ orbitals for neutron-rich F, Ne

Backup Calcium

Evolution of Shell Structure

SPE evolution with 3N forces in *pf* and *pfg*_{9/2} spaces:

NN+3N *pf*-shell:

JDH, Otsuka, Schwenk, Suzuki JPG (2012)

Trend across: improved binding energies Increased gap at ⁴⁸Ca: enhanced closed-shell features

Include $g_{9/2}$ orbit, calculated SPEs

Different behavior of ESPEs (not observable, model dependent)

Small gap can give large 2^+ energy: due to many-body correlations

Duguet, Hagen, PRC (2012) Duguet, Hergert, JDH, Soma, in prep.

Two-body 3N: Monopoles in *pf*-shell

First calculations to show missing monopole strength due to neglected 3N

Experimental Connection: Mass of 54Ca

New precision mass measurement of ^{53,54}Ca at **ISOLTRAP**: multi-reflection ToF

ISOLTRAP *Measurement* Sharp decrease past ⁵²Ca Unambiguous closed-shell ⁵²Ca Test predictions of various models

EDF Calculations

Reasonable overall trend Closed-shell features not reproduced for ^{48,52}Ca

Calcium Ground State Energies and Dripline

Ground state energies using NN+3N

NN-only: overbinds beyond $\sim {}^{46}Ca$

Holt, Otsuka, Schwenk, Suzuki, JPG (2012)

pf-shell: 3N forces correct binding energies; good experimental agreement $pfg_{9/2}$ -shell: calculate to ⁷⁰Ca; modest overbinding near ⁵²Ca Heaviest calcium isotope ~ ⁵⁸⁻⁶⁰Ca; flat behavior past ⁵⁴Ca

Pairing in Calcium Isotopes: Ladders

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium

HFB iterates ladders microscopically in pairing channel
Compare with *pp, hh* ladders to 3rd order
Improved agreement with experiment
Convergence in order-by-order ladders
Suppression from 3N forces as in EDF
Incorrect odd/even staggering

JDH, Menendez, Schwenk, in prep

N=28 Magic Number in Calcium: Spectrum

Generally spectrum too compressed

*pfg*_{9/2}-shell: With NN+3N spectrum comparable to phenomenology **Both 3N and extended space essential**

Impact on Spectra: ⁴⁹Ca

Neutron-rich calcium spectra with NN+3N

Spectrum typically too compressed NN+3N in $pfg_{9/2}$ correct $1/2^-$

Comparable to phenomenology (as for all lighter Ca isotopes)

Impact on Spectra: ⁵¹Ca

Neutron-rich calcium spectra with NN+3N

Possibility to assign spin/parity where unknown Gamma-ray spectroscopy needed

N=28 Magic Number: *M1* Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

N=28 Magic Number: *M1* Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

pf-shell:

3N concentrates strength Peaks below experiment

JDH, Otsuka, Schwenk, Suzuki, JPG (2012)

N=28 Magic Number: M1 Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

pf-shell:

3N concentrates strength Peaks below experiment

JDH, Otsuka, Schwenk, Suzuki, JPG (2012)

 $pfg_{9/2}$ -shell:

3N gives additional concentration Peak close to experimental energy

Supports N=28 magic number

Effective Operators

Investigate many-body effects on effective charges and quenching of g_A

Use low-momentum interactions and 3N forces

Evaluating Center-of-Mass Contamination

Clear improvement from standard *sd*-shell – not due to center of mass **Missing physics** involving N > 2 neutrons in extended space

Evaluating Center-of-Mass Contamination

Apply new H_{eff}^{LS} to calculate spectra in neutron-rich oxygen

Improvements from standard *sd*-shell – not due to center of mass Work in progress: involving N > 2 neutrons in extended space

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from NN+3N in sd-shell

Hergert, JDH, Bogner, Schwenk, in prep.

Repulsive 3N gives unbound $d_{3/2}$ Good dripline properties

Heavier semi-magic chains: Nickel and Tin

82

Nuclei with p/n valence degrees of freedom

Towards full sd- and pf-shells First step: Fluorine and Neon Revisit cross-shell theory

Moving beyond stability

Continuum effects near driplines

Fundamental symmetries

Non-empirical calculation of 0vββ decay Effective electroweak operators WIMP-nucleus scattering

RIUMF

en's

Fundamental Symmetries: 0vββ-Decay

What is the nature and mass of the neutrino?

Calculations of $M_{0\nu}$ in ⁴⁸Ca, ⁷⁶Ge, and ⁸²Se

Phenomenological wavefunctions from A. Poves, M. Horoi

⁴⁸ Ca	Bare	0.77	⁷⁶ Ge	Bare	3.12	⁸² Se	Bare	2.73
	Effective	1.30		Effective	3.77		Effective	3.62

Converged in 13 major oscillator shells Lincoln, JDH et al. [LEBIT], PRL (2013) JDH and Engel, PRC (2013) Kwiatkowski, Brunner, JDH et al. [TITAN], PRC (2014)

Overall ~25-30% increase for ⁷⁶Ge, ⁸²Se; 75% for ⁴⁸Ca

Promising first steps – up next...

- Consistent wavefunctions and operators from NN+3N
- Improve operator: 2-body currents from chiral EFT
- Non-perturbative methods (IM-SRG)
- Effects of induced 3-body operators

Menendez, Gazit, Schwenk, PRL (2011)

Shukla, Engel, Navratil, PRC (2011)

Heavier semi-magic chains: Nickel and Tin

Nuclei with p/n valence degrees of freedom

Towards full sd- and pf-shells **First step: Fluorine and Neon Revisit cross-shell theory**

Moving beyond stability

protons

2

Continuum effects near driplines

Islands of inversion in sd/pf regions **Exotic cores**

NN+3N interactions for community

Fundamental symmetries

Non-empirical calculation of $0\nu\beta\beta$ decay **Effective electroweak operators** WIMP-nucleus scattering

Ab-initio optical model potential

Heavier semi-magic chains: Nickel and Tin

Nuclei with p/n valence degrees of freedom

Towards full sd- and pf-shells First step: Fluorine and Neon Revisit cross-shell theory

Moving beyond stability

Continuum effects near driplines

Islands of inversion in sd/pf regions Exotic cores

NN+3N interactions for community

Fundamental symmetries

50

Non-empirical calculation of 0vββ decay Effective electroweak operators WIMP-nucleus scattering

Ab-initio optical model potential

Beyond MBPT for valence-shell interactions Nonperturbative In-Medium SRG

Heavier semi-magic chains: Nickel and Tin

Nuclei with p/n valence degrees of freedom

Towards full sd- and pf-shells First step: Fluorine and Neon Revisit cross-shell theory

Moving beyond stability

Continuum effects near driplines

Islands of inversion in sd/pf regions Exotic cores

NN+3N interactions for community

Fundamental symmetries

Non-empirical calculation of 0vββ decay Effective electroweak operators WIMP-nucleus scattering

Ab-initio optical model potential

50

Beyond MBPT for valence-shell interactions Nonperturbative In-Medium SRG

Coupled cluster theory

Neutron drops for ab-initio benchmarking Constraints on density functionals Error analysis wrt exact diagonalization

Heavier semi-magic chains: Nickel and Tin

Nuclei with p/n valence degrees of freedom

Towards full sd- and pf-shells First step: Fluorine and Neon Revisit cross-shell theory

Moving beyond stability

Continuum effects near driplines

Islands of inversion in sd/pf regions Exotic cores

NN+3N interactions for community

neutrons

Fundamental symmetries

Non-empirical calculation of 0vββ decay Effective electroweak operators WIMP-nucleus scattering

Ab-initio optical model potential

with L. Caballero, A. Arcones

Beyond MBPT for valence-shell interactions Nonperturbative In-Medium SRG

Coupled cluster theory

Neutron drops for ab-initio benchmarking Constraints on density functionals Error analysis wrt exact diagonalization

Map driplines in sd- and pf-shell regions

Guidance for r-process region

Heavier semi-magic chains: Nickel and Tin

Nuclei with p/n valence degrees of freedom

Towards full sd- and pf-shells First step: Fluorine and Neon Revisit cross-shell theory

Moving beyond stability

Continuum effects near driplines

Islands of inversion in sd/pf regions Exotic cores

NN+3N interactions for community

Fundamental symmetries

Non-empirical calculation of 0vββ decay Effective electroweak operators WIMP-nucleus scattering

Ab-initio optical model potential

Beyond MBPT for valence-shell interactions Nonperturbative In-Medium SRG

Coupled cluster theory

Neutron drops for ab-initio benchmarking Constraints on density functionals Error analysis wrt exact diagonalization

Map driplines in sd- and pf-shell regions

Guidance for r-process region

Proton Dripline

Proton-Rich Systems

Towards calculations of all sd- and pf-shell nuclei: islands of inversion

Ground-State Energies of N=8 Isotones

Ground-State Energies of N=8 Isotones

isobaric multiplet mass equation (IMME) $E(A,T,T_{z}) = E(A,T,-T_{z}) + 2b(A,T)T_{z}$ $b = 0.7068A^{2/3} - 0.9133$ **NN-only**: overbound **NN+3N**: improved agreement with

experiment/IMME

JDH, Menendez, Schwenk, PRL (2013)

Dripline unclear: ²²Si unbound in AME, NN+3N; bound in IMME

Ground-State Energies of N=8 Isotones

Dripline unclear: ²²Si unbound in AME, NN+3N; bound in IMME

²²Si possible two-proton emitter
Mass measurement needed!

S _{2p}	IMME	NN+3N (sd)	NN+3N ($sdf_{7/2}p_{3/2}$)	
	0.01 MeV	-1.63 MeV	-0.12 MeV	

N=8 and N=20 Proton SPEs

Interaction and self-consistent SPEs from NN+3N $sdf_{7/2}p_{3/2}$ - and $pfg_{9/2}$ -spaces NN-only: empirical SPEs in *sd*- and *pf*-shells only

Orbit	Empirical	$T + V_{NN} + V_{3N}$	Orbit	Empirical	$T + V_{NN} + V_{3N}$
<i>d</i> _{5/2}	-0.60	-0.41	$f_{7/2}$	-1.07	-0.86
<i>s</i> _{1/2}	-0.10	0.95	P3/2	-0.63	1.40
<i>d</i> _{3/2}	4.40	4.57	P1/2	2.38	3.94
$f_{7/2}$	-	9.73	$f_{5/2}$	5.00	5.36
P _{3/2}	_	12.64	J 9/2	_	6.40

Spectra of N=8 Isotones

JDH, Menendez, Schwenk, PRL (2012)

NN+3N: reasonable agreement with experiment

New measurement: excited state in ²⁰Mg close to predicted 4⁺-2⁺ doublet Predictions for proton-rich ²¹Al, ²²Si spectra Closed sub-shell signature in ²²Si

Ground-State Energies of N=20 Isotones

Ground-State Energies of N=20 Isotones

Dripline: Predicted to be ⁴⁶Fe in all calculations

C	Expt.	NN+3N (pf)	NN+3N ($pfg_{9/2}$)	
S _{2p}	-1.28(6) MeV	-2.73 MeV	-1.02 MeV	

Prediction for ⁴⁸Ni within 300keV of experiment

Dossat et al (2005); Pomorski et al (2012)

Spectra of N=20 Isotones

JDH, Menendez, Schwenk, PRL (2013)

NN+3N: reasonable agreement with measured 42 Ti

Predictions for proton-rich spectra

Mirror energy differences with Ca isotopes ~400keV

Closed-shell signature in ⁴⁸Ni

Intermediate-State Convergence

Results in ⁸²Se (with phenomenological wavefunctions from A. Poves)

Results **well converged** in terms of intermediate state excitations Improvement due to low-momentum interactions Similar trend in ⁷⁶Ge and ⁴⁸Ca

Quenching of GT Strength

Investigate many-body effects on quenching of g_A

Set of two-body diagrams contributing to renormalization of g_A in $2\nu\beta\beta$ decay: product of 2 single-beta-decay

Quenching of 38% in ⁸²Se ($g_A \sim 1.0$)

Quenching of GT Strength

Investigate many-body effects on quenching of g_A

Calculate GT transitions in sd- and pf-shells

Transition	NN	NN+3N
$d_{5/2} ightarrow d_{5/2}$	0.899	0.899
$d_{3/2} ightarrow d_{3/2}$	0.894	0.907
$d_{5/2} ightarrow d_{3/2}$	0.852	0.852
$s_{1/2} ightarrow s_{1/2}$	0.855	0.855
$f_{7/2} ightarrow f_{7/2}$	0.853	0.851
$f_{5/2} ightarrow f_{5/2}$	0.823	0.827
$f_{7/2} ightarrow f_{5/2}$	0.799	0.796
$p_{3/2} ightarrow p_{3/2}$	0.829	0.829
$p_{1/2} ightarrow p_{1/2}$	0.895	0.924
$p_{3/2} ightarrow p_{1/2}$	0.815	0.816

Net quenching between 0.8-0.9 Consistent with findings from $2\nu\beta\beta$ decay

Larger quenching when spin-orbit partners absent from valence space

Converged using low-momentum interactions – little effect from 3N

Backup Details

Renormalization of Nuclear Interactions

$$H(\Lambda) = T + V_{\rm NN}(\Lambda) + V_{\rm 3N}(\Lambda) + V_{\rm 4N}(\Lambda) + \dots$$

Textbook nuclear potentials in \mathbf{r} -space

- Hard core, long-range one-pion exchange

Also treat in momentum space

- Strong high-momentum repulsion, coupling of low to high momenta

Renormalization of Nuclear Interactions

$$H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$$

Evolve momentum resolution scale of chiral interactions from initial Λ_{χ} Remove coupling to high momenta, low-energy physics unchanged

 $V_{\text{low }k}(\Lambda)$: lower cutoffs advantageous for nuclear structure calculations

Chiral Effective Field Theory: 3N Forces

c terms given from NN fits: constrained by NN, π N data

 $c_D c_E$ fit to properties of light nuclei: Triton binding energy, ⁴He radius

Strategy

1) Effective interaction: sum excitations outside valence space to 3rd order

2) Single-particle energies calculated self-consistently

 \bigstar 3) Harmonic-oscillator basis of 13 major shells: **converged**

4) NN and 3N forces – fully to 3^{rd} -order MBPT

5) Work in extended valence spaces

Clear convergence with HO basis size Promising order-by-order behavior

Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self-consistently
- \bigstar 3) Harmonic-oscillator basis of 13 major shells: **converged**
 - 4) NN and 3N forces fully to 3^{rd} -order MBPT
 - 5) Work in extended valence spaces

G-matrix – no signs of convergence (similar in pf-shell)

Strategy

1) Effective interaction: sum excitations outside valence space to 3rd order

2) Single-particle energies calculated self-consistently

 \bigstar 3) Harmonic-oscillator basis of 13 major shells: **converged**

4) NN and 3N forces – fully to 3^{rd} -order MBPT

5) Work in extended valence spaces

Clear convergence with HO basis size Promising order-by-order behavior

Convergence Properties

NN matrix elements derived from:

- Chiral N³LO (Machleidt, 500 MeV) using smooth-regulator $V_{\text{low }k}$

- Third order in MBPT

- 13 major HO shells for intermediate state configurations

Clear convergence with HO basis size Promising order-by-order behavior

Convergence Properties

NN matrix elements derived from:

- Chiral N³LO (Machleidt, 500 MeV) using smooth-regulator $V_{\text{low }k}$

- Third order in MBPT

- 13 major HO shells for intermediate state configurations

G-matrix – no sign of convergence

3N Forces for Valence-Shell Theories

Effects of residual 3N between 3 valence nucleons?

Normal-ordered 3N: microscopic contributions to inputs for CI Hamiltonian Effects of residual 3N between 3 valence nucleons?

Coupled-Cluster theory with 3N: benchmark of ⁴He

0- 1- and 2-body of 3NF dominate
Residual 3N can be neglected
Work on ¹⁶O in progress

Approximated residual 3N by summing over valence nucleon - Nucleus-dependent: effect small, not negligible by $^{24}{\rm O}$

Backup Intro

From QCD to Nuclear Interactions

How do we determine interactions between nucleons?

Monopole Part of Valence-Space Interactions

Microscopic MBPT – effective interaction in chosen model space Works near closed shells: deteriorates beyond this

Deficiencies improved adjusting particular two-body matrix elements

Monopoles: Angular average of interaction

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT}}{\sum_{J} (2J+1)}$$

Determines interaction of orbit *a* **with** *b*: *evolution of orbital energies*

Microscopic **low-momentum** interactions *Phenomenological* **USD** interactions

Clear shifts in **low-lying orbitals**: -T=1 repulsive shift

Origin of shifts: Neglected 3N forces -- Zuker (2003)

Perturbative Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- \star 3) Harmonic-oscillator basis of 13-15 major shells: **converged**
 - 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
 - 5) Explore extended valence spaces

Clear convergence with HO basis size Promising order-by-order behavior

