Neutrino Emissivities from Deuteron-Breakup and Formation in Supernovae

Satoshi Nakamura
Osaka University

F. Myhrer, K. Kubodera (U. of South Carolina)
Introduction

Light elements in supernova (SN) 2H, 3H, 3He ... etc.

Snapshot of supernova profile (150 ms after core bounce)

Mass fraction abundance of light elements based on nuclear statistical equilibrium

Sumiyoshi, Röpke, PRC 77, 055804 (2008)

Q: Can light elements in SN influence SN evolution?
Yes, it does!

Neutrino absorption by deuteron can boost shockwave drastically in some cases
Neutrino emission from light elements in SN

ν-emission previously considered (A≤2)

* $p + e^- \rightarrow n + \nu_e$
* $n + e^+ \rightarrow p + \bar{\nu}_e$
* $n + n \rightarrow p + n + e^- + \bar{\nu}_e$
* $p + p \rightarrow p + n + e^+ + \nu_e$
* $N + N \rightarrow N + N + \nu + \bar{\nu}$
Neutrino emission from light elements in SN

ν-emission previously considered (A≤2)

* \(p + e^- \to n + \nu_e \)
* \(n + e^+ \to p + \bar{\nu}_e \)
* \(n + n \to p + n + e^- + \bar{\nu}_e \)
* \(p + p \to p + n + e^+ + \nu_e \)
* \(N + N \to N + N + \nu + \bar{\nu} \)

New agents considered here

\(d + e^- \to n + n + \nu_e \)
\(d + e^+ \to p + p + \bar{\nu}_e \)
\(n + n \to d + e^- + \bar{\nu}_e \)
\(p + p \to d + e^+ + \nu_e \)
\(p + n \to d + \nu + \bar{\nu} \)
Neutrino emission from light elements in SN

ν-emission previously considered (A≤2)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>New agents considered here</th>
</tr>
</thead>
<tbody>
<tr>
<td>* $p + e^- \rightarrow n + \nu_e$</td>
<td>$d + e^- \rightarrow n + n + \nu_e$</td>
</tr>
<tr>
<td>* $n + e^+ \rightarrow p + \bar{\nu}_e$</td>
<td>$d + e^+ \rightarrow p + p + \bar{\nu}_e$</td>
</tr>
<tr>
<td>* $n + n \rightarrow p + n + e^- + \bar{\nu}_e$</td>
<td>$n + n \rightarrow d + e^- + \bar{\nu}_e$</td>
</tr>
<tr>
<td>* $p + p \rightarrow p + n + e^+ + \nu_e$</td>
<td>$p + p \rightarrow d + e^+ + \nu_e$</td>
</tr>
<tr>
<td>* $N + N \rightarrow N + N + \nu + \bar{\nu}$</td>
<td>$p + n \rightarrow d + \nu + \bar{\nu}$</td>
</tr>
</tbody>
</table>

Questions to be addressed:

- How much ν are emitted by deuteron processes compared with the conventional ones?
- Regarding SN evolution, what is implied by the new ν-emission from light elements?

Contents of this talk: description of model ➔ numerical results ➔ conclusion
Calculational method

Well-established method for electroweak processes in few-nucleon systems

\[\langle \psi_f | H_{\text{ew}} | \psi_i \rangle \]

\(|\psi\rangle \): solution of Schröding eq. with high-precision \(NN \) (+ \(NNN \)) potential

AV18, Nijmegen, Bonn, chiral etc.
Weak Interaction Hamiltonian

\[H^{CC}_W = \frac{G'_F V_{ud}}{\sqrt{2}} \int d\mathbf{x} [J^{CC}_\lambda(\mathbf{x}) L^\lambda(\mathbf{x}) + \text{h. c.}] \quad \text{for CC} \]

\[H^{NC}_W = \frac{G'_F}{\sqrt{2}} \int d\mathbf{x} [J^{NC}_\lambda(\mathbf{x}) L^\lambda(\mathbf{x}) + \text{h. c.}] \quad \text{for NC} \]

\[L^\lambda(\mathbf{x}) = \bar{\psi}_l(\mathbf{x}) \gamma^\lambda (1 - \gamma^5) \psi_\nu(\mathbf{x}) \]
Nuclear current

\[
J^C_C(x) = V^\pm(x) + A^\pm(x)
\]

\[
J^{NC}_\lambda(x) = V^3_\lambda - 2\sin^2\theta_W (V^3_\lambda + V^s_\lambda) + A^3_\lambda
\]

\(V(A)\): Vector (Axial) current

\(V^s\): Isoscalar vector current

\(\theta_W\): Weinberg Angle \(\sin^2\theta_W = 0.23\)

\(J_\lambda = \) (one-body current) + (two-body exchange current)
Impulse approximation (IA) current

\[
< p' | V_\lambda(0) | p > = \bar{u}(p') \left[f_V \gamma_\lambda + i \frac{f_M}{2M_N} \sigma_{\lambda \rho} q^\rho \right] u(p)
\]

\[
< p' | A_\lambda(0) | p > = \bar{u}(p') \left[f_A \gamma_\lambda \gamma^5 + f_P \gamma^5 q_\lambda \right] u(p)
\]

\[q_\lambda \equiv p'_\lambda - p_\lambda \]

\[f_M : \text{CVC} \quad f_P : \text{PCAC} \]

\[
f_A(q_\mu^2) = -g_A \left(1 - \frac{q_\mu^2}{1.04 \text{[GeV}^2]\right)}^{-2}, \quad g_A = 1.2670 \pm 0.0030 \text{ (PDG)}
\]
Exchange axial-vector current

Fit $AN\Delta$ coupling to tritium β-decay rate with rigorous three-body calculation

Predicted rates for muon captures on deuteron and 3He are consistent with data

Marcucci et al., PRC 83 (2011)

$\nu_e + d \rightarrow e^- + p + p$, $\nu + d \rightarrow \nu + p + n$ for SNO expt. SN et al. PRC 63 (2000) ; NPA707 (2002)
Emissivity (Q)

\[e^- + d \rightarrow \nu_e + n + n \]

\[
Q = \frac{(2\pi)^4}{S} \int \frac{dp_{N_1}}{(2\pi)^3} \frac{dp_{N_2}}{(2\pi)^3} \frac{dp_d}{(2\pi)^3} \frac{dp_{\nu}}{(2\pi)^3} \frac{dp_{e^-}}{(2\pi)^3} \delta^4(p_f - p_i) \\
\times E_{\nu} \sum_{\text{spin}} |\langle \psi_f | H_{\text{ew}} | \psi_i \rangle|^2 f_d f_e (1 - f_{N_1}) (1 - f_{N_2})
\]

\[
f_k(p_k) = \frac{1}{\exp\left((e_k(p_k) - \mu_k)/k_B T\right) \pm 1}
\]

+ : fermion
- : boson

S : symmetry factor for identical particles
Numerical results
Emissivities presented are for:

- **Surface** region of proto-neutron star ($r > 10$ km)
- **Inner** region of proto-neutron star ($r < 10$ km)

Deuteron can be largely modified, or even doesn’t exist

⇒ “deuteron” as two-nucleon correlation in matter

supernova profile (150 ms after core bounce)

Sumiyoshi, Röpke, PRC 77, 055804 (2008)
Emissivities presented are for:

- **Surface** region of proto-neutron star \((r > 10 \text{ km}) \)

- **Inner** region of proto-neutron star \((r < 10 \text{ km}) \)

 Deuteron can be largely modified, or even doesn’t exist

 ➔ "deuteron" as two-nucleon correlation in matter

supernova profile (150 ms after core bounce)

Sumiyoshi, Röpke, PRC 77, 055804 (2008)
ν_e-emissivity \hspace{1cm} (r > 10 \text{ km})$

electron capture \hspace{1cm} NN fusion

\[Q(e^- p) > Q(e^- d) > Q(\text{NN} \rightarrow d)\]
Change of ν_e emissivity due to deuteron

Mass fraction

$Q(N+d) / Q(N)$
Change of ν_e emissivity due to deuteron

Deuterons exit at the cost of the proton abundance plus $\sigma(e^-p) > \sigma(e^-d)$

Effectively reduced ν_e emissivity \Rightarrow less ν-flux, ν-heating

Careful estimate of light element abundance & emissivity needed
Whenever NN brem is important, $NN \rightarrow d$ (correlation) can be also important

\Rightarrow Possible important role in proto-neutron star cooling
ν-emission in SN: \[e^\pm + d \rightarrow \nu_e(\bar{\nu}_e) + N + N \quad N + N \rightarrow d + l + \bar{l} \]

New agents other than direct & modified Urca, NN bremsstrahlung

Emissivities \leftrightarrow NN wave functions based on high-precision NN potential
+ 1 & 2-body nuclear weak currents (tested by data)

Electron captures \Rightarrow effectively reduced ν_e emissivity

\Rightarrow light element abundance & emissivity are important

NN fusions \Rightarrow play a role comparable to NN bremsstrahlung & modified Urca

$\Rightarrow np \rightarrow d\nu\bar{\nu}$ can be important for ν_μ emissivity
Backups
ν_μ-emissivity

Whenever NN bremsstrahlung is important, $np \rightarrow d$ can be also important

Possible important role in proto-neutron star cooling
Medium effect on deuteron

Deuteron wave function with Pauli-blocking at $r = 11.7$ km, $\rho = 6 \times 10^{13}\text{g/cm}^3$, $T=25$ MeV

- Significant decrease of B.E. at $P_d=0$
- B.E. recovered free B.E. at $P_d=1$ GeV

Reduction rate : $1 - Q(\text{in-medium})/Q(\text{free})$

<table>
<thead>
<tr>
<th>r (km)</th>
<th>11.7</th>
<th>19.7</th>
<th>40.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction rate (%)</td>
<td>15</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Most recent applications of the model to weak processes

★ *pp-fusion* \((p + p \rightarrow d + e^+ + \nu_e)\) for solar model, Schiavilla et al. PRC 58 (1998)

★ *Muon capture* \((\mu^- + d \rightarrow n + n + \nu_\mu, \mu^- + ^3He \rightarrow ^3H + \nu_\mu)\), Marcucci et al., PRC 83 (2011)

<table>
<thead>
<tr>
<th></th>
<th>[1]</th>
<th>[2]</th>
<th>Theory</th>
<th>MuSun@PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma(\mu^- + d) [s^{-1}])</td>
<td>409 ± 40</td>
<td>470 ± 29</td>
<td>393</td>
<td>???</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma(\mu^- + ^3He) [s^{-1}])</td>
<td>1496 ± 4</td>
</tr>
</tbody>
</table>

|----------------|---------------------------------|

★ *vd-reactions* \((\nu_e + d \rightarrow e^- + p + p, \nu^- + d \rightarrow \nu + p + n)\) for SNO experiment

SN et al. PRC 63 (2000); NPA707 (2002)

⇒ evidence of \(\nu\)-oscillation, solar \(\nu\) problem resolved
Emissivity \((Q)\)

\[\begin{align*}
N_1 + N_2 & \rightarrow N'_1 + N'_2 + \nu + \bar{\nu} \\
Q & = \frac{(2\pi)^4}{S} \int \frac{dp_{N_1}}{(2\pi)^3} \frac{dp_{N_2}}{(2\pi)^3} \frac{dp_{N'_1}}{(2\pi)^3} \frac{dp_{N'_2}}{(2\pi)^3} \frac{dp_{\nu}}{(2\pi)^3} \frac{dp_{\bar{\nu}}}{(2\pi)^3} \delta^{(4)}(p_f - p_i) \\
& \times (E_{\nu} + E_{\bar{\nu}}) \sum_{\text{spin}} \left| \langle \psi_f | H_{\text{ew}} | \psi_i \rangle \right|^2 F_{N_1} F_{N_2} (1 - F_{N'_1})(1 - F_{N'_2}) \\
F_N & = \frac{1}{1 + \exp[(\varepsilon_N - \mu_N)/kT]}
\end{align*} \]
Emissivity \((Q)\)

\[N_1 + N_2 \rightarrow d + \nu + \bar{\nu} \]

\[Q = \frac{(2\pi)^4}{S} \int \frac{dp_{N_1}}{(2\pi)^3} \frac{dp_{N_2}}{(2\pi)^3} \frac{dp_d}{(2\pi)^3} \frac{dp_{\nu}}{(2\pi)^3} \frac{dp_{\bar{\nu}}}{(2\pi)^3} \delta^{(4)}(p_f - p_i) \]

\[\times (E_\nu + E_{\bar{\nu}}) \sum_{\text{spin}} |\langle \psi_f | H_{\text{ew}} | \psi_i \rangle|^2 F_{N_1} F_{N_2} \]

11 dimensional integral !!

Approximation necessary to evaluate \(Q\)
Emissivity \((Q)\)

\[
Q \propto \int dp_N \int dp_{N_2} \int dp_\nu \int dp_{\bar{\nu}} \omega \delta(E_f - E_i) \delta^{(3)}(\vec{p}_f - \vec{p}_i) |M|^2 F_{N_1}(\vec{p}_1) F_{N_2}(\vec{p}_2)
\]

\[
p^2 dp d\Omega_p dP
\]

\[
\delta \left[\left(\frac{D}{2} + \frac{p_t^2}{2M_d} \frac{\omega}{\omega} \right) \left(\frac{p^2}{4M_N} \frac{\omega}{M_N} \right) \right]
\]

Approximation!

\[
Q \propto \int dp_\nu \int dp_{\bar{\nu}} \omega p^2 \left[\int d\Omega_p |M|^2 \right] \left[\int dP F_{N_1}(\vec{P}/2 + \vec{p}) F_{N_2}(\vec{P}/2 - \vec{p}) \right]
\]

\[
8\pi^2 \frac{p^2}{p_\nu p_{\bar{\nu}}} \int dp_\nu \int dp_{\bar{\nu}} \int d\cos \theta_{\nu\bar{\nu}}
\]

3 dimensional integral
Previous common approximation to evaluate $Q_{\text{NN-brem}}$

- One-pion-exchange potential, Born approximation
 Low-energy theorem

- Nuclear matrix element \Rightarrow long wave length limit
 \Rightarrow constant

Neither of them are adopted in this work
Previous common approximation to evaluate $Q_{\text{NN-brem}}$

- One-pion-exchange potential, Born approximation
- Low-energy theorem

- Neglect momentum transfer ($\vec{p}_\nu + \vec{p}_{\bar{\nu}}$)

 ➔ also angular correlation between ν and $\bar{\nu}$

- Nuclear matrix element ➔ long wave length limit

 ➔ constant
Emissivites from direct Urca, e^+e^- annihilation, NN brems ⇐ compilation I

Emissivites from election captures on d & NN fusion ⇐ compilation II

• Compilation I : Shen EoS, N, 4He, a heavy nucleus

• Compilation II : light elements abundance from Sumiyoshi & Röpke (2008)

Both have the same density, temperature, electron fraction
Exchange vector current

★ Current conservation for one-pion-exchange potential
★ $VΝΔ$ coupling is fitted to $np \rightarrow dγ$ data
Comparison with $np \rightarrow d\gamma$ data

$n+p \rightarrow d+\gamma$

Exchange currents contribute about 10%
Exchange axial charge

Kubodera, Delorme, Rho, PRL 40 (1978)

\[
\begin{array}{c}
\uparrow \\
\pi \\
\downarrow \\
\end{array}
\]

Soft pion theorem + PCAC
Why tritium β decay?

νd: Gamow-Teller ($^3S_1 \rightarrow ^1S_0$) \Rightarrow A_{EXC} is main correction

3H: Fermi ($^1S_0 \rightarrow ^1S_0$) & Gamow-Teller

$\rho(x)$ [fm$^{-1}$]

$\rho_{vd} \approx \rho_{^3H}$ = const.

Schiavilla et al., PRC58,1263(1998)
E_{ν}-dependence of energy transfer cross section

νd CC

* solid: $T_{\nu} = 5\text{MeV}$
* dashed: $T_{\nu} = 10\text{MeV}$

\[
\sigma \omega (E_{\nu}) \times f(T, E_{\nu}) \times 10^{-42} \text{cm}^2 \text{MeV}
\]

\[
\begin{array}{c}
0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 \\
\end{array}
\]

$E_{\nu} [\text{MeV}]$

* Main contribution is from $E_{\nu} = 20 (60) \text{MeV}$ for $T_{\nu} = 5 (10) \text{MeV}$

* High energy tail of $\sigma \omega \times f$ is appreciable
\[Q(e^+ n) > Q(e^+ d) > Q(NN \rightarrow d) \]
\(\nu_\mu \)-emissivity

Whenever NN brem is important, \(np \rightarrow d \) can be also important

Possible important role in proto-neutron star cooling
Neutrino spectrum

\[Q[\text{erg/cm}^3/\text{sec}/\text{MeV}] \]

\[E_\nu [\text{MeV}] \]

\[r_c = 20 \text{Km} \]
\[r_c = 50 \text{Km (x 5e5)} \]

\[nn \rightarrow d\bar{e}\bar{\nu}_e \]

\[\bar{e} d \rightarrow nn \nu_e \]
Supernova profile

Sumiyoshi, Röpke, PRC 77, 055804 (2008)
Meson exchange current effect on Q

Large effect on NN fusion!
Why so large meson exchange current effect?

Higher NN kinetic energy causes large exchange current effect

Axial exchange current & higher partial waves are important; uncertainty