STATUS OF THE RED EXPERIMENT

D.Yu. Akimov (MEPhI&ITEP) on behalf of COHERENT collaboration

akimov d@itep.ru

NDM'15, June 1-5, 2015, Jyväskylä, Finland

((C)HERENT **The COHERENT collaboration**

~ 50 collaborators from 16

institutions

Institution	Board Member	
University of California, Berkeley	Kai Vetter	
University of Chicago	Juan Collar	
Duke University	Kate Scholberg	
University of Florida	Heather Ray	
Indiana University	Rex Tayloe	
Institute for Theoretical and Experimental Physics, Moscow	Dmitri Akimov	
Lawrence Berkeley National Laboratory	Ren Cooper	
Los Alamos National Laboratory	Steve Elliott	
National Research Nuclear University MEPhI	Alex Bolozdynya	
North Carolina Central University	Diane Markoff	
Oak Ridge National Laboratory	Jason Newby	
Pacific Northwest National Laboratory	John Orrell	
Sandia National Laboratory	David Reyna	
University of Tennessee, Knoxville	Yuri Efremenko	
Triangle Universities Nuclear Laboratory	Phil Barbeau	
University of Washington	Jason Detwiler	
THE UNIVERSITY OF CHICAGO		

The COHERENT collaboration

Team of experts in: CEvNS, broad range of technologies, neutrons, neutrino flux

UC Berkeley Kai Vetter*

U. of Chicago Juan Collar* Nicole Fields Gopan Perumpilly Bjorn Scholz

Duke U. Jan Adam Phil Barbeau Justin Raybern Long Li Kate Scholberg**

U. of Florida Heather Ray* Dipak Rimal Matthew McIntyre Indiana University Robert Cooper Lisa Kaufman Mike Snow Rex Tayloe*

ITEP Dmitri Akimov* Vladimir Below Alexander Burenkov Alexey Konovalov Dmitry Rudik

LANL Steve Elliott*

LBNL

Paul Barton Ren Cooper* Spencer Klein Kai Vetter

CB rep, ** spokesperson, # TBC Students in blue Note some people listed for >1 institution

MEPhI Alexander Bolozdyna* Yuri Efremenko Alexander Etenko # Alexander Khromov Alexander Kumpan Alexey Melikyan Pavel Naumov Valery Sosnovchev # Alexey Shakirov Ivan Tolstukhin

NCCU Diane Markoff*

ORNL David Dean Yuri Efremenko Alfredo Galindo-Uribarri Matt Green Donny Hornback Erik Iverson Wei Lu Paul Mueller Jason Newby* Seppo Penttila David Radford Chang-Hong Yu

PNNL Michael Foxe

Todd Hossbach John Orrell*

Sandia Belkis Cabrera-Palmer Mark Gerling David Reyna*

U. of Tennessee Yuri Efremenko* Alfredo Galindo-Uribarri Geoff Greene

TUNL Phil Barbeau* Long Li Justin Raybern Grayson Rich Diane Markoff

U. of Washington Clara Cuesta Jason Detwiler^{*}

History Prediction of the Standard Model Brief review of projects RED-100 detector Principle of operation Experiment at SNS (COHERENT Collaboration) Current status of experiment Summary

Prediction of the Standard Model

Elastic coherent neutral-current (NC) neutrino-nucleus scattering was 1-st predicted theoretically in 1974: D.Z. Freedman, D.N. Schramm, and D.L. Tubbs. "The weak neutral current and its effects in stellar collapse." Ann. Rev. Nucl. Part. Sci. 27, 167 (1977)

but has never been observed experimentally.

 $\mathbf{v} + \mathbf{A} \rightarrow \mathbf{v} + \mathbf{A}$

A neutrino interacts with a nucleus via exchange of a Z, and the nucleus as a whole,

coherently up to $E_v \sim 50 \text{ MeV}$

The low-energy nuclear recoil is the only signature of this process

Differential cross section:

$$\frac{d\sigma}{dE_r} = \frac{G_F^2}{4\pi} Q_w^2 M \left(1 - \frac{ME_r}{2E_v^2}\right) F^2 (Q^2),$$

 G_F – Fermi constant $F(Q^2)$ – form factor at four-momentum Q $Q_W = N - (1 - 4 \sin^2(\theta_W))Z$ – weak charge for a nucleus with N and Z θ_W – weak mixing angle; $\sin^2(\theta_W) \approx 0.22 \Rightarrow Q_W \sim N$; $\sigma \sim N^2$ For heavy nuclei, the cross sections is by ~ 2 orders of magnitude higher than that for v-e scattering

and by ~ one order of magnitude higher than that for inverse β -decay

the energy deposition is in keV region for v produced at spallation neutron sources, and in sub-keV region for reactor *v*

The detector mass must be significant, of an order of several tens of kg or even more.

~30-y anniversary of Drukier&Stodolsky paper

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

We study detection of MeV-range neutrinos through elastic scattering on nuclei and identification of the recoil energy. The very large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a true "neutrino observatory." The recoil energy which must be detected is very small (10–10³ eV), however. We examine a realization in terms of the superconducting-grain idea, which appears, in principle, to be feasible through extension and extrapolation of currently known techniques. Such a detector could permin determination of the neutrino energy spectrum and should be insensitive to neutrino oscillations since it detects all neutrino types. Various applications and tests are discussed, including spallation sources, reactors, supernovas, and solar and terrestrial neutrinos. A preliminary estimate of the most difficult backgrounds is attempted.

FIG. 2. Average recoil energy for various nuclei as a function of neutrino energy.

Elastic coherent v-Nucleus scattering (CEvNS)

Coherent scattering significantly affects supernova dynamics

99% of gravitational binding energy goes to v!

"Non-standard" physics

Monitoring of nuclear reactors

CEvNS is irreducible background in DM experiments

Development detectors for CEvNS

Ge detectors: CoGeNT (USA), TEXONO (Taiwan)

p-type point contact (PPC) Ge detector: Can operate with a very low threshold (below 1 keV)!

Development detectors for CEvNS

Attempts to build gas detectors

Array of cylindrical gas proportional counters.

Gas detectors with micro pattern amplification structures

A. V. Kopylov et al., Advances in High Energy Physics V. 2014 (2014), Article ID 147046

P. S. Barbeau et al., IEEE Trans. on Nucl. Sci., V. 50 (2003), no. 5, 1285

Such detectors have very low energy thresholds.

However, it is difficult to obtain the mass higher than several kg

Development detectors for CEvNS

Particle detection of with a two-phase emission detector

Two-phase detector

It combines the advantages of gas detectors: the possibility of proportional or EL amplification, XYZ positioning, and the possibility to have the large mass!

Two-phase noble gas detectors are superior in sensitivity: single ionisation electron can be detected

Proposals to use two-phase detector for CEvNS experiments

Proposal of Lawrence Livermore National Lab. with a two-phase LAr:

C. Hagmann, A. Bernstein, <u>IEEE Trans. Nucl.</u> Sci. 51 (2004) 2151 [nucl-ex/0411004].

Proposal of ITEP&INR LXe:

D. Akimov, A. Bondar, A. Burenkov, and A. Buzulutskov, <u>JINST 4 (2009) P06010</u> [arXiv:0903.4821]

Proposal of ZEPLIN-III Collaboration LXe:

E. Santos, B. Edwards, V. Chepel et al., <u>JHEP 1112</u> (2011) 115 [arXiv:1110.3056].

15

RED project

JINST 8 (2013) P10023 e-Print: <u>arXiv:1212.1938</u>

Spallation neutron source (SNS, Oak Ridge National Laboratory, USA)

Kalinin Nuclear Power Plant, Udomlia, RF

16

In Mar 2014 the COHERENT collaboration established

COFFE

The goal is the discovery of CEvNS using three different detection techniques at SNS:

LXe - RED-100 Ge - Majorana detectors CsI(Na) crystals (CsI

and Xe targets has close neutron numbers)

Proposal to DOE is being prepared₁₇

SNS as a neutrino source

SNS proton energy ~1 GeV power 1.4 MW

v flux at 30 m (all 3 types): ~7 x 10⁶ v/cm²/sec

Experimental site

The basement of the experimental hall

Experimental site

РОССИЙСКИЙ ЭМИССИОННЫЙ ДЕТЕКТОР

Detector RED-100 (~100 kg of LXe in FV, ~250kg total) Russian Emission Detector

RED-100 is a two-phase noble gas emission detector. Contains ~250 kg of LXe, ~100 kg in FV.

The sensitive volume ~ 45 cm in diam ~ 45 cm in height, is defined by the top and bottom optically transparent mesh electrodes and field-shaping rings.

PMTs are Hamamatsu R11410-20 (low-background); 38 in total (2 x 19)

Drift field is ~ 0.5 ÷ 1 kV/cm;

Field in EL region is ~ 7 ÷ 10 kV/cm (in the gas phase).

Size of the EL region – 1 cm. The expected *number of photoelectrons per one electron* extracted to the gas phase ~ 80.

NR energy spectrum and ionization yield

Most of the NR events have energies in the region well studied by the experimental groups carried out the DM search experiments;

LXe response for NR is well known

LXe response for ER is well known too

T.Ya. Voronova et al., Sov. Phys. Tech. Phys. 34 iss. 7 (1989) 825
NEST (Noble Element Simulation Technique) model: http://nest.physics.ucdavis.edu/site

Timing at SNS

SNS pulsed beam is an essential factor in background reduction!

Duty factor = 10 μ s/16.7 ms \approx 1/1600

Expected gamma-background at SNS

We started modeling backgrounds for the experimental site (basement)

Expected neutron-background at SNS

The neutron bckg simulation is based on the measured neutron flux in the basement

No neutron shield (moderator)!

Radial cut – 163 mm

Exposition – 9 months With duty factor ~1/1600, with selection S1 ≥ 2 phe

- n-N ///// n-N v-N
- n associated with beam n not associated with beam

With duty factor ~1/1600, with selection S1 \ge 2 phe, and with time selection > 1 µs after start of the SNS pulse

Unfortunately, the v_{μ} prompt component is lost in this case

RED-100 detector assembling

RED-100 detector infrastructure

Active divider for R11410-20

The detector will work in much harder muon background (~10 s⁻¹) than that in DM experiments. Muon deposits ~ 250 MeV → 10⁹ phe

To prevent rapid degradation of the photocathodes due to the intense illumination a blocking pulse is sent to the PMTs

Timeline of experiment

	2015	2016	2017	2018	2019
Assembling RED-100					
Shipping RED-100 to SNS, deployment and commissioning					
Data taking with LXe					≡ :

Conclusion

- Discovery of elastic coherent v-nucleus scattering predicted 40 years ago is very close
- The emission two-phase detection technique well developed for DM search is an excellent tool
- Background conditions are good for the basement of the SNS experimental hall to observe the effect with the LXe detector
- The RED-100 emission detector is being assembled and will be ready for deployment at SNS soon

Short announcement

MEPhI has a PostDoc program on this and other projects

Please enquire: http://mephi.ru/eng/

or

akimov_d@itep.ru

ALLWAND STATE

MILLES