Nuclear Response and Gamma Emissivity Studied by Proton Inelastic Scattering

Atsushi Tamii

Research Center for Nuclear Physics (RCNP)
Osaka University, Japan

: Neutrinos and Dark Matter in Nuclear Physics 2015 (NDM15), June 1-5, 2015, Jyväskylä
Outline

1. IS/IV spin-M1 response in $N=Z$ sd-shell nuclei

 Quenching in IS/IV spin-M1 transition strengths

2. Gamma Emissivity of the Giant Resonances in 12C and 16O

 NC ν-Reaction in Water Cherenkov Detector
IS/IV spin-$M1$ responses and their quenching in $N=Z$ sd-shell nuclei

H. Matsubara1, A. Tamii2
and RCNP-E299 collaboration

1National Institute of Radiological Sciences
2RCNP, Osaka University
IS/IV spin-$M1$ response

ν-opacity and ν-transportation in SNe and PNS

SNe dynamics, nucleosynthesis, cooling of a proton neutron star

- GT, IS/IV-spinM1 response of nuclear matter
- IS-spinM1 response of pure neutron matter

Spin (magnetic) susceptibility and response to a strong magnetic field

\[
\frac{\chi_\sigma}{2n} = \frac{4}{3N} \sum_f \frac{1}{\omega} \left| \langle f | \sum_i \sigma_i | 0 \rangle \right|^2
\]

G. Shen et al., PRC 87, 025802 (2013)

Magnetic response of nuclear matter in a magnetar

The mechanism of quenching need to be understood well.
Measurement of IS/IV spin-\mathcal{M}_1 Transition Strengths in $N=Z$ Nuclei

Stable self-conjugate even-even nuclei:

\[(^4\text{He}), ^{12}\text{C}, ^{16}\text{O}, ^{20}\text{Ne}, ^{24}\text{Mg}, ^{28}\text{Si}, ^{32}\text{S}, ^{36}\text{Ar}, ^{40}\text{Ca}\]

We measured (p,p') for all the above nuclei except ^4He.

ground state: $0^+; T=0$
Spectrometer Setup for 0-deg (p,p') at RCNP

As a beam spot monitor in the vertical direction

Transport: Dispersive mode
Intensity: 3 ~ 8 nA
IS/IV 1^+ states were identified from angular distribution for each of IS and IV transitions. The cross sections at the most forward angles have were converted to the spin-M1 strengths.
Angular Distribution

$\Delta T (IS \text{ or } IV)$ has also been identified from angular distribution.
Unit cross section (UCS)

- Conversion factor from cross-section to Squared Nuclear Matrix Elements (SNME)
- Calibration from β and γ-decay measurements (on the assumption of the isospin symmetry).

\[
\frac{d\sigma}{d\Omega}(0^\circ) = \hat{\sigma}_T F(q, E_x) M_f(O)^2
\]

($T=\text{IS or IV}$)

UCS Kinematical factor SNME

\[
\hat{\sigma}_T(A) = N \exp(-xA^{1/3})
\]

- Function taken from the mass dependence of GT UCS

M. Sasano et al., PRC79, 024602 (2009)
Spin-M1 Strength Distribution

Sum of the strengths is taken up to 16 MeV for each of IS and IV transitions.
IS Spin-M1 Matrix Elements Are NOT Quenching from the shell-model prediction with USD

(a) Isoscalar : $\sum |M(\vec{\sigma})|^2$

1.01(9)

(b) Isovector : $\sum |M(\vec{\sigma}\tau_z)|^2$

0.61(6)

No quenching

Quenching similar to GT
Difference of IS and IV

Correlated Gaussian Method: W. Horiuchi
Non-Core Shell Model: P. Navratil
Shell-Model: USD interaction
The ground state expectation value can be extracted from the sum-rules of the IS/IV spin-M1 transition matrix elements.

\[\langle \vec{S}_n \cdot \vec{S}_p \rangle = \frac{1}{4} \langle (\vec{S}_n + \vec{S}_p)^2 - (\vec{S}_n - \vec{S}_p)^2 \rangle \]

\[= \frac{1}{16} \left(\sum |M(\vec{\sigma})|^2 - \sum |M(\vec{\sigma}_z)|^2 \right) \]

IS - IV

\[\langle \vec{S}_n^2 + \vec{S}_p^2 \rangle = \frac{1}{4} \langle (\vec{S}_n + \vec{S}_p)^2 + (\vec{S}_n - \vec{S}_p)^2 \rangle \]

\[= \frac{1}{16} \left(\sum |M(\vec{\sigma})|^2 + \sum |M(\vec{\sigma}_z)|^2 \right) \]

IV spin-M1 transition matrix elements

\[\langle (\vec{S}_n + \vec{S}_p)^2 \rangle = \frac{1}{4} \sum |M(\vec{\sigma})|^2 \]

IS spin-M1 transition matrix elements

\[\langle (\vec{S}_n - \vec{S}_p)^2 \rangle = \frac{1}{4} \sum |M(\vec{\sigma}_z)|^2 \]
Correlated 2p-2h Admixture in the ground state

induced by tensor-type short-range correlation

\[\langle \vec{S}_n \cdot \vec{S}_p \rangle > 0\]
^4He with realistic NN interaction

(Correlated Gaussian Method)

Spin matrix elements of the ^4He ground state

<table>
<thead>
<tr>
<th></th>
<th>$\langle \vec{S}_p^2 + \vec{S}_n^2 \rangle$</th>
<th>$\langle \vec{S}_p \cdot \vec{S}_n \rangle$</th>
<th>S=0</th>
<th>S=1</th>
<th>S=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV8'</td>
<td>0.572</td>
<td>0.135</td>
<td>85.8%</td>
<td>0.4%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Stronger tensor int.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3RS</td>
<td>0.465</td>
<td>0.109</td>
<td>88.5%</td>
<td>0.3%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Weaker tensor int.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>0.039</td>
<td>-0.020</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>No tensor int.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\vec{S} = \vec{S}_p + \vec{S}_n \]

CG calc. by W. Horiuchi

H. Feldmeier, W. Horiuchi et al., PRC84, 054003(2011)
Difference of IS and IV

Correlated Gaussian Method: W. Horiuchi
Non-Core Shell Model: P. Navratil
Shell-Model: USD interaction

AV8': 0.135 (stronger tensor)
G3RS: 0.109 (weaker tensor)

Minneapolis: -0.020 (no-tensor)
Difference of IS and IV

Correlated Gaussian Method: W. Horiuchi
Non-Core Shell Model: P. Navratil
Shell-Model: USD interaction
NCSM
P. Navratil

Correlated Gaussian Method: W. Horiuchi
Non-Core Shell Model: P. Navratil
Shell-Model: USD interaction

$\langle S_n \cdot S_p \rangle$

$\langle S_p \cdot S_p \rangle$

Target mass

Exp. (p,p') —
Exp. (e,e') —
USD
USD-eff
SFO
CG-
AV8'
G3RS
Minnesota
NCSM-
Chiral NN
Minnesota

N_{max}
Summary of the 1st Part

- Study of the spin-M1 responses in nuclei and their quenching mechanism is important for the ν-transportation in SNe or in PNS.

- The IS spin-M1 SNME in $N=Z$ sd-shell nuclei are NOT quenching from the shell model prediction with USD int, while the IV spin-M1 SNMEs are quenching as is the case of GT.

- The positive values of the IS-IV SNMEs hint the np-correlated 2p2h admixture in the gourd state, and are supported by the CG calculation of 4He with realistic tensor interaction and by NCSM calculations.
Gamma Emissivity of
the Giant Resonances in 12C and 16O

I. Ou and M. Sakuda (Okayama Univ.)

and

A. Tamii (RCNP, Osaka Univ.)

for the RCNP-E398 Collaboration
Supernova Neutrino Detection by NC Neutrino Reactions

* Expected number of events by a core-collapse supernova explosion @10kpc

- Super Kamiokande (H$_2$O)

 Beaaccom-Vogel, PRD58, 053010 (1998)

 \[CC: \bar{\nu}_e + p \rightarrow e^+ + n \]
 \[\sim 8000 \text{ ev.} \]

 \[NC: \nu_x + {}^{16}O \rightarrow \nu_x + X + \gamma (\nu_x = \nu_\mu, \nu_\tau) \]
 \[\sim 700 \text{ ev.} \]

- KamLAND (CH)

 A. Suzuki, NPB-Suppl 77, 171 (1999)

 \[CC: \bar{\nu}_e + p \rightarrow e^+ + n \]
 \[\sim 300 \text{ ev.} \]

 \[NC: \nu_x + {}^{12}C \rightarrow \nu_x + X + \gamma (15.1MeV) \]
 \[\sim 60 \text{ ev.} \]

 \[NC: \nu_x + {}^{12}C \rightarrow \nu_x + X + \gamma (E_X > 16MeV) \]
 \[\sim 60 \text{ ev.} \]

NC events can be detected by γ-rays

* SN 1987A @50kpc
Importance of the NC Reactions in 16O

- The 2nd most type of events.
- μ, τ–ν events dominate NC.
 $\rightarrow T_{\nu\mu}, T_{\nu\tau} > T_{\nu e}$ Info. on equilibrium temp
- Effect of the ν-oscillation

Essentially no data exist on γ-ray emissivity from giant resonances
\rightarrowRCNP-E398: measurement of the γ-ray emission probability(Pr) and the energy from GDR and SDR.

Numerical simulations of Supernova

Estimated signal in SK
K. Langanke PRL76, 2629(1996)
γ-Emission from Giant Resonances in ^{16}O

$\Sigma E_\gamma > 5 \text{ MeV}$

Statistical cal. (SMOKER)

$@ <E_x> = 25\text{MeV}$

$Pr(\text{NC }^{15}\text{N}^*\gamma) = 25\%$

$Pr(\text{NC }^{15}\text{O}^*\gamma) = 6\%$

Langanke PRL76, 2629(1996)
γ-Emission from Giant Resonances in ^{12}C

$\Sigma E_{\gamma} > 2$ MeV
Probing Nuclear Matrix Elements by a Light-Ion (Hadronic) Reaction

(Cross Section) \sim (Kinematical Factor) \times [(Interaction) \times (Matrix Element)]2

Requires calibration

Neutral Current ν Reaction

Proton Inelastic Scattering

Common between the hadronic reaction and the neutrino reaction

$\nu_l, \bar{\nu}_l$, $\nu_l', \bar{\nu}_l'$

$\nu_l, \bar{\nu}_l$

$\langle f | O(\Delta S, \Delta T, \Delta L) | i \rangle$

$\langle f | O(\Delta S, \Delta T, \Delta L) | i \rangle$

IVGDR: $\Delta S=0$, $\Delta T=1$, $\Delta L=1$

IVSDR: $\Delta S=1$, $\Delta T=1$, $\Delta L=1$

(spin-M1, IS, …)
Probing Nuclear Matrix Elements by a Light-Ion (Hadronic) Reaction

(Cross Section) \(\sim (\text{Kinematical Factor}) \times (\text{Interaction}) \times (\text{Matrix Element})^2 \)

Requires calibration

Common between the hadronic reaction and the neutrino reaction

Neutral Current \(\nu \) Reaction

Proton Inelastic Scattering

\(\nu, \bar{\nu}, \nu' \)

\(p, n \)

IVGDR: \(\Delta S=0, \Delta T=1, \Delta L=1 \)

IVSDR: \(\Delta S=1, \Delta T=1, \Delta L=1 \)

(spin-M1, IS, …)
$^{16}\text{O}(p, p')$ at small angles

- $\nu\nu'$: SDR($2^-,1^-$) dominant. $\nu\nu'$: SDR & $1^+(15.11\text{MeV})$ dominant
- $O,C(p,p')$: SDR($1^-,2^-$) shows up at $\theta=3^\circ\sim5^\circ$

$^{16}\text{O}(p,p')$ at $E_p=392\text{ MeV}$ Kawabata PRC65, 064316(2012)

0°: GDR dominant ($\Delta L=1,\Delta S=0,\Delta T=1$)

4°: SDR dominant ($\Delta L=1,\Delta S=1,\Delta T=1$)
Excitation

* Proton Beam: 392 MeV, 0.5~1.5nA
* Target: \(^{nat}\text{C}\) (36.3 mg/cm\(^2\))
* Magnetic Spectrometer “Grand Raiden”
 * \(\theta_{\text{scat}} = 0^\circ\) (covers 0° ~ 3°)
 * Solid Angle = 5.6 msr
 * \(\Delta E_x \sim 100\) keV

Gamma-ray

* \(\gamma\)-detector: NaI(Tl) \(\times 25\) Array
 * Solid Angle \(\times\) Detection Efficiency
 * \(~ 2\% @ 6\) MeV (GEANT4)
 * each NaI: 25\(\times 25\times 15\) cm, \(\Delta E\sim 5\% @ 1.33\) MeV
 * Front: Plastic Scintillator Veto (3mm thick)
The peak energies agreed with the known values in ~40 keV.
\(^{16}\text{O} \text{ Spectrum after subtraction of } ^{12}\text{C}\)

Subtraction with normalization to \(^{12}\text{C}(1^+: 15.1\text{MeV})\)

Subtraction worked good.
GRs in \(^{16}\text{O}\) were clearly observed.

Reference: \(\text{H}_2\text{O(Ice)}\) target

T. Kawabata PRC65, 064316 (2002)
γ-Detector (in-situ 15.1MeV γ-ray calibration)

In situ γ-rays from $^{12}\text{C}(15.1\text{MeV}, 1^+, \text{Pr}_{\gamma-15.1} = 88\% \pm 3\%)$ are used to *calibrate* the energy scale and the efficiency of the NaI-Array.

The γ-ray emission probability can be calibrated precisely.

$^{12}\text{C}(p,p')$ 0.5nA, 2hrs

E$_\gamma$ Spectrum

γ-15.1MeV peak
(+single escape +double escape)

Solid Angle \times Detection efficiency (Single NaI) $= \frac{817}{(3.9 \times 10^5 \times 0.88)}$

*Angular correlation is not include yet.

$= 0.24\%$
Gamma-Rays from 16O Giant Resonances

γ-rays from GRs in 16O were observed
Gamma-Rays from 16O Giant Resonances

5-9 MeV γ-rays after n/p decay to 15O/15N
Estimated Number of γ Events from Giant Resonances

Number of γ-ray events in 2hrs run (analyzed)

<table>
<thead>
<tr>
<th>Ex</th>
<th>ΔT</th>
<th>Ex=16~27MeV</th>
<th>Ex=16~21MeV</th>
<th>Ex=21~27MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2hrs</td>
<td>20359</td>
<td>2129</td>
<td>18230</td>
</tr>
<tr>
<td>16</td>
<td>2hrs</td>
<td>11164</td>
<td>2797</td>
<td>8367</td>
</tr>
</tbody>
</table>

Estimated γ-ray events in total run

<table>
<thead>
<tr>
<th>Ex</th>
<th>ΔT</th>
<th>Ex=16~27MeV</th>
<th>Ex=16~21MeV</th>
<th>Ex=21~27MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>40hrs</td>
<td>4.1×10</td>
<td>4.3×10</td>
<td>3.6×10</td>
</tr>
<tr>
<td>16</td>
<td>30hrs</td>
<td>1.7×10</td>
<td>4.2×10</td>
<td>1.3×10</td>
</tr>
</tbody>
</table>

Gamma emission probabilities will be determined with an accuracy (Stat. + Sys.) of ~10% in 1 MeV Ex bin.

Expected systematic uncertainties

- Detection efficiency < ~10% ← under analysis
- Subtraction of 12C from $C_6H_{10}O_5$ < ~5%
Summary of the 2nd Part

γ-ray from giant resonances in 12C & 16O are important for SN neutrino Physics.

ν-Flux $\times \sigma_{NC} \times Pr \ (E398 \ Data) \rightarrow$ Estimation for NC-γ events from SN

E398: Measurement of γ-rays from Giant Resonances

Data Analysis

- Excitation Energy Spectrum ✔️
- Demonstration of In-situ γ-ray Calibration ✔️

γ-rays from giant resonances of 12C and 16O have been measured

Next Step

Analysis of the γ-ray emission probability.

Correlation P_γ and θ_{scat} (0~1°, 1~2°, 2°~3°) \rightarrow decomposition of GDR & SDR

$Pr(^{16}O*\rightarrow^{15}O*+n/^{15}N*+p\rightarrow5\text{-}10\text{MeV-γ})$ is expected to be determined with $\sim 10\%$ accuracy in 1 MeV E_x bin)