The Present Generation of Bolometers for DBD Searches

C.Brofferio University of Milano Bicocca and INFN

NDM15, Jyvaskyla June 1-5, 2015

Why Bolometers ?

- Excellent energy resolution (better than 0.2 % FWHM possible) \bullet
- Excellent high efficiency (typically more than 80%) \bullet
- Can study many candidates (even at the same time) \bullet
- Scalable up to 1000 detectors (CUORE as demonstrator) \bullet
- Effective anti-coincidence technique (eliminate multi-site events) \bullet
- **Possible particle identification with same readout technique** \bullet

The bolometric way to DBD

• Source embedded in the detector, 0νββ emitters: **130Te, 82Se, 100Mo, 124Sn**

- Material: TeO₂, ZnSe, ZnMoO₄, CaMoO₄, Sn... All with small enough specific heat at low temp.
- Temperature sensors:
	- NTD thermistors (G \sim 10, easy)
	- TES (G \sim 100-1000, difficult but well settled)
	- MMC (G \sim 100, R&D level)
- Excellent resolution @0νββ energy: ΔEFWHM ~5 keV

Best isotope?

Isotopes have comparable sensitivities in terms of rate per unit mass

Ref: Robertson MPL A28, 2013, 1350021 arXiv:1301.1323

Best isotope?

On the large scale, all isotopes are NOT the same owing to backgrounds, natural and enriched material cost, challenging technologies, logistics of implementation…

Courtesy of S. Biller, ICTP October 2013

Importance of energy resolution

Experiments measure the sum of the kinetic energies of the two emitted βs . Signature: monochromatic line at the Q-value of the decay.

2νββ irreducible background negligible if ΔE<10 keV BUT don't forget pile-up!!

Eur.Phys.J. C74 (2014) 10, 3096

Isotope	Crystal	$N_{\beta\beta}$	$\mathrm{T}_{1/2}^\mathrm{2\nu}$	Bkg in ROI [5 keV]
		n/crystal	y	[cnts/ton/y]
82 Se	ZnSe	2.5×10^{24}	9.2×10^{19}	2.7×10^{-2}
116 Cd	CdWO ₄	1.5×10^{24}	2.8×10^{19}	0.07
$^{100}\rm{Mo}$	ZnMoO ₄	1.3×10^{24}	0.7×10^{19}	1.5
$^{130}\mathrm{Te}$	TeO ₂	2.5×10^{24}	68×10^{19}	0.5×10^{-3}

Excellent ΔE extra-bonus:

- narrower $ROI = better sensitivity$
- better identification of background components
- handle against any peaking background **⁶**

Experimental issues

Half-life sensitivity

Std case: Signal in competition with bkg

CUORE

Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals run as a bolometer array
	- $-$ 5x5x5 cm³ crystal, 750 g each
	- 19 Towers; 13 floors; 4 modules per floor
	- -741 kg total; 206 kg ¹³⁰Te
	- -10^{27} 130 Te nuclei

Fiorini's and Avignone's big dream was born in 1997…

Goal and Status of CUORE

Energy resolution @ ROI: 5 keV
Background goal: 0.01 c/(keV kg y)
Sensitivity 90% C.L. (5 y):

$$
T_{1/2} = 9.5 \times 10^{25} \text{ y}
$$
 $m_{\beta\beta} = 50-130 \text{ meV}$

Assembly of the 19 CUORE towers is complete.

Commissioning of the cryogenic system and experimental infrastructure is in progress

6mK stable base temperature achieved in October 2014

Plan to start operations by end of 2015.

DBD with bolometers: status

Lucifer : ZnSe

Lumineu : ZnMoO4

AMoRE: CaMoO4

TIN.TIN: pure Sn

Detector assembly *The Family Album June 2015*

Cuore-0

DBD with bolometers: status

DBD with bolometers: ΔE

Lucifer

CUORE-0: the present

CUORE-0 0νDBD results

A real benchmark for many key items on the path to CUORE BUT also a good experiment for 0vDBD

CUORE-0 lesson: the bkg

Power of Particle Identification

 238 U with 5 μ m depth profile on TeO₂ and detector copper surfaces Assume $5\sigma \alpha - \beta$ separation

15

02/24/2014

α identification in scintillating bol.

Scintillating crystals can be operated as bolometers. The simultaneous read-out of light and thermal signals allows to discriminate the α background thanks to the scintillation yield different from β particles.

α identification in TeO2: Cherenkov

Rejection technique: detect the Cherenkov light emitted by βs (signal) and not by αs.

α identification: LY

Lumineu Mo nat.

The Family Album June 2015

$$
DP(E) = \frac{\left|\mu_{\alpha}(E) - \mu_{\beta/\gamma}(E)\right|}{\sqrt{\sigma_{\alpha}^2(E) + \sigma_{\beta/\gamma}^2(E)}}
$$

AMoRE Mo enr.

identification: PSD

Lucifer Se

The Family Album June 2015

AMoRE Mo enr.

α identification: light detectors

 $DP~3.7$

α

. **130 eV** @2615 keV

TES+TES+TeO2

o

X-ray rise time \approx 6 μ s

30

10 20

Zeit [µs]

Temperatur $= 21$ mK

 $\Phi_{S,max} = 5.97 \; m\phi_0$ t_0 = 5.95 µs

 0.006

0.004

 0.002

 0.000

counts / 4 eV bin

 $40 -$

 $20¹$

 $-20 - 10$

码线

NTD+NTD+TeO2

NTD+GeNL+TeO2

see A. Giuliani's talk on CUPID

The Family Album $\frac{1}{2}$ $\frac{1}{2}$

Light yield [eV/MeV]

20

DBD with bolometers: crystals

Lumineu : ZnMoO4

The Family Album June 2015

Crystallization and enr.:

- specific for each crystal
- can increase bkg
- losses

AMoRE: CaMoO4

Enriched ∼1.4 kg boule st crystal bkg (TeO2 nat, µBq/kg):

Present expected characteristics

CUORE Bkg Budget

Conservative upper limits: NEED CUORE MEASURE

Only after \sim 1 y of CUORE data we will be able to know how all these contribute

Future for bolometers in DBD?

• Successful operation (cryogenics) of a ton-scale bolometric exp.

- In-situ background measurements in a ton-scale detector ☛ For CUPID, see CUORE by ~2016
- Demonstration of a technology for \sim 0 bkg ton-scale experiment
	- ☛ Already done with scintillating bolometers

 \blacktriangleright Additional R&D activities on going (e.g. Cherenkov for TeO₂)

• Demonstration of scalability of technology choice

☛ AMoRE phase 1 in 2016 @Y2L

- ► LUCIFER/LUCINEU in 2016 @LNGS
- ☛ Additional multi-channel R&D runs @LNGS
- R&D on industrialization of crystal production, enrichment

BACK-UP

CUORE and CUPID Sensitivity

Plot against m_β for a change...

CUORE will cover a good part of the IHR

Strange enough, Katrin and CUORE sensitivities match at the border line of both HR

Cuore Upgrade with Particle Identification

Cosmic and Cosmogenic Backgrounds

Cosmic ray-induced backgrounds within ± 20 keV of Q_{BB}(¹³⁰Te)

CUORE ROI - BULK CONTRIBUTIONS FROM EXTERNAL SOURCES

counts/(ton ke v year)

γ rate estimates limited by available data and MC statistics: will measure in CUORE μ rate may need to be reduced (by \sim 1/10): μ veto at LNGS or deeper site

Cosmogenic activation of near detector elements (Te and Cu): minimize by storing both underground as soon as possible. Most dominant backgrounds from

- ⁶⁰Co in Cu structures: <50 μ Bq/kg \rightarrow <5×10⁻¹ counts/(ton keV year) in ROI
- Other contributions negligible \rightarrow will measure Cu activation in CUORE and reassess

28

Sensitivity

- Assumptions: \bullet
	- \rightarrow 988 125 cm³ crystals
	- ‣ 90% enrichment
	- ‣ 5 years & 5 keV resolution
	- ‣ background ~0.1cpy/ton

Eur. Phys. J. C74 (2014) 10, 3096

