Exploring Solar Neutrinos Recent Results and Future Opportunities Frank Calaprice Princeton University ### "Energy production in stars" H. Bethe, Physical Review 55 434, March 1 1939 – 75 years ago. The pp chain H. Bethe (1906-2005) #### The CNO Cycle Lights up most of the stars we see at night, but only 1% of Sun The CNO neutrino flux depends on ¹²C abundance. Rate depends on "metallicity", abundance of elements heavier than ⁴He. ## Solar Neutrino Spectra #### Neutrino Energy Spectrum #### Neutrino-Electron Elastic Scattering Energy Spectrum ## Solar Neutrino Spectra Neutrino Energy Spectrum Neutrino-Electron Elastic Scattering Energy Spectrum X2 for keV #### Detection of Solar Neutrinos - 1. Radiogenic Detectors: - Chlorine ³⁷Cl(v_e, e-)³⁷Ar: ⁷Be, ⁸B: → Solar neutrino problem - GALLEX, SAGE ⁷¹Ga(v_e, e⁻)⁷¹Ge: pp, ⁷Be, ⁸B - 2. Water Cherenkov Detectors - Kamiokande ⁸B (v+e⁻) elastic scattering- directionality - Super-K ⁸B (v+e⁻) elastic scattering directionality - SNO charged + neutral currents ⁸B→ Neutrino Oscillations - 3. Liquid Scintillator Detectors: v+e⁻ elastic scattering - Borexino I (2007-2010) ⁷Be, pep, ⁸B ν's - Kamland (2013) 7 Be ν 's - Borexino II (2014) pp v's ## Liquid Scintillator Detectors - Elastic scattering: $v + e^- \rightarrow v + e^-$ - Measure energy spectrum with $\Delta E/E \sim 5\%$ @ 1 MeV - Position of event by photon time-of-flight: - No directionality. - Sensitive to α , β , γ and all other backgrounds. - α's (²¹⁰Po) separated by pulse shape discrimination PSD - Background strategy: - Suppress background with active shielding. - Use energy spectrum to separate signal and background - PSD also useful for e+ background. #### Borexino Liquid Scintillator Detector To achieve low background, Borexino uses thick layers of active shielding, thin radiopure nylon vessels to contain scintillator, and purification methods to remove radioactivity from scintillator. #### Shielding Against External Background. Water: 2.25m Buffer zones: 2.5 m Outer scintillator zone: 1.25 m ## Low-Background Strategy - Water, Buffers(2) and Scintillator Self-Shielding - Designed to suppress external backgrounds - Scintillator and vessel radioactivity are left as the main background sources. - Scintillator Containment Vessel - Nylon balloon with small mass and low radioactivity. - Built in low-radon cleanroom to avoid dust and ²¹⁰Pb (22 yr) - Expect ~ 1 cpd 210 Pb due to radon exposure during construction. - Purification of simple liquid scintillator - Pseudocumene (PC) & 1.5 g/l PPO - Distillation, water extraction, and N₂ gas stripping. - Precision cleaning methods employed. ### Nylon Scintillator Containment Vessel Fabricated in Low-Radon Cleanroom John Bahcall First hermetically sealed cleanroom with low-radon air. Reduces radioactivity due to dust and ²²²Rn daughters ★ ²¹⁰Pb (22 yr) Nylon film developed for low background use. Fabrication: > 1 yr ## Performance of Nylon Vessels - ✓ Low rate of gamma rays from vessel. - ✓ Low rate of radioactivity from dirty particulates on surface. - Clean vessel with only ~ 10 cpd of 214 Bi- 214 Po near vessel - X High rate of ²¹⁰Pb on nylon surface. - Much higher rate than expected from exposure to low-radon air during fabrication. We have 100's decays/day - Water used for first filling is likely source. - Poor removal of radon daughers in ground water by standard water purification systems. ## Scintillator Purification System Distillation, N₂ Stripping, Water Extraction @ ~1 ton/hr Precision Cleaned. Assembled in Low-radon Clean Room # Pseudocumene Purification During Filling Operations. J. Benziger et al. / Nuclear Instruments and Methods in Physics Research A 587 (2008) 277-291 ### Borexino Re-Purification Systems Water Extraction or Distillation followed by N2 Stripping #### Performance of Scintillator Purification - Distillation system - ✓ Achieved low radioactivity after first purification - ✓ Low level of 210 Pb ~ 15 cpd/ 100 t - **X** Poor for 210 Po: $\sim 8000 \text{ cpd}/100t$ (Why? It may be water.) - N₂ stripping - ✓ Removed ⁸⁵Kr during scintillator re-purification. - Water extraction (Re-purification) - ✓ Reduced ²³⁸U and ²³²Th upper chain. - ✓ Moderate reduction of ²¹⁰Pb - X Poor removal of ²¹⁰Po (again ²¹⁰Po in water) #### Borexino Phases I & 2 Phase I 2007 - 2010 Scintillator purified while filling. Measured ⁷Be, pep, ⁸B neutrinos Phase II 2010 - 2014 Background Reduced by Scintillator Re-purification Measurement of pp neutrinos #### Phase I Energy Spectra ⁷Be-result: PRL 107 141302 (2011) Data based on 740.7 live days between May 16, 2007 and May 8, 2010. Prominent backgrounds: ²¹⁰Po ²¹⁰Bi ⁸⁵Kr, ¹¹C & ¹⁴C (not shown) CNO obscured mainly by ²¹⁰Bi. The pep was measured by applying cuts to reduce the ¹¹C. (muon track, neutron, other) ²¹⁰Po α-rate very high \sim 8000 cpd/100t Rejected by α/β pulse shape discrimination. Curiously, ²¹⁰Pb was very low, \sim 10 cpd/100t. Break in secular equilibrium in A= 210? ## Phase I spectrum with backgrounds #### Phase II - Scintillator Re-purification 2010-2011 - Water extraction - N₂ stripping - Data acquistion 2011-2014. - Analysis of data for pp- neutrinos ## Borexino Water Extraction Systems Current & upgraded systems with 2 new fractional distillation columns #### Results of Re-purification by Water Extraction $$30 \text{ cpd}/100t \rightarrow$$ $$< 5 \text{ cpd} / 100 \text{t}$$ $$[(530 \pm 50) \rightarrow$$ Reduction factor > 77 $$[(530 \pm 50) \rightarrow < 8 \times 10^{-20} \text{ gU/g}]$$ Reduction factor > 77 (< 0.8 count/100t/yr). $$[(3.8 \pm 0.8 \rightarrow$$ $$< 1.0$$] x 10^{-18} gTh/g Reduction factor > 3. (< 0.8 count./100 t/yr) $$70 \text{ cpd}/100t \rightarrow$$ $$20 \pm 5 \text{ cpd} / 100 \text{t}$$ Essentially not reduced!! WHY??? Rates before purification are based on 153.6 ton-yr exposure taken in 740.7 d between May 16, 2007 and May 8, 2010. # Backgrounds before & after Water Extraction + N₂ Stripping Before re-purification 2008-2010 Rates in parentheses are in cpd/100t. Without ¹¹C cuts. See arXiv1308.0443v1. After re-purification 2012-2013 (with ¹¹C cuts) #### pp-neutrino spectral fit & Residuals 165-590 keV # Spectral fit for pp neutrinos and backgrounds. | Table 1 Results from the fit to the energy spectrum | | | | | | |---|--|-------------------------------------|--|--|--| | Parameter | Rate ± statistical error
(c.p.d. per 100 t) | Systematic error (c.p.d. per 100 t) | | | | | pp neutrino
⁸⁵ Kr
²¹⁰ Bi
²¹⁰ Po | 144 ± 13
1 ± 9
27 ± 8
583 ± 2 | ±10
±3
±3
±12 | | | | The best-fit value and statistical uncertainty for each component are listed together with its systematic error. The χ^2 per degree of freedom of the fit is χ^2/d .o.f. = 172.3/147. ## Borexino Measurements | ✓ ⁷ Be | 46.0 | cpd/100t | $\pm 5\%$. | PRL | 2011 | |-------------------|-------|----------|-------------|--------|------| | ✓ 8B (> 3 MeV) | 0.22 | cpd/100t | $\pm 19\%$ | PRD | 2010 | | √ pep | 3.1 | cpd/100t | $\pm 22\%$ | PRL | 2012 | | ✓ CNO limit: | < 7.9 | cpd/100t | | PRL | 2012 | | √ pp | 144 | cpd/100t | ± 16% | Nature | 2014 | #### Borexino I & II Results - First spectroscopic measurement of the ppneutrinos from the keystone p-p fusion reaction. - Measurements of four pp-chain neutrinos prove that the Sun derives its power from the pp-chain - Neutrino luminosity agrees with photon luminosity within uncertainty. - Rates agree with the Standard Solar Model and neutrino oscillations described by MSW theory. - Survival probability shows transition from vacuum to matter-effect neutrino oscillations. ## Future goals for Borexino III #### 1. CNO measurement. Rate differs 30% between high and low metallicity #### 2. Improve accuracy for pp, ⁷Be, pep, ⁸B - Probe for non-standard interactions - Refine MSW transition, vacuum to matter oscillation. - Neutrino luminosity check. #### 3. Requirements: - Solve mystery of A=210 backgrounds (✓?) - Lower ²¹⁰Bi background with temperature control and re-purification. ## Summary - Borexino developed a low background liquid scintillator detector that made possible direct spectroscopic measurements of solar neutrinos. - Phase I produced the ⁷Be, pep, and ⁸B data after initial filling of the detector. - Phase II produced the pp-neutrino data after background reduction by scintillator re-purificiation. - Phase III started in 2015 with continuing efforts toward even lower backgrounds that could allow a measurement of CNO neutrinos. - Results from Phase III could yield the best data and provide a better understanding of neutrino physics and the Sun. #### Borexino Collaboration - Astroparticle and Cosmology Laboratory - Gran Sasso Science Insitute - INFN Laboratori Nazionali del Gran Sasso - INFN e Dipartimento di Fisica dell'Universita Genoa - INFN e Dipartimento di Fisica dell'Universita Milano - INFN e Dipartimento di Chimica dell'Universita Perugia - Insittute for Nuclear Research - Institut fur Experimnetalphysik, Universitat Hamburg - Institute of Physics, Jagellonian University - Joint Institute for Nuclear Research - Kuchatov Institute - Max-Planck Institute fuer Kernphysik - Princeton University - Technische Universitat - University of Massachusettes at Amherst - University of Moscow - Virginia Polytechnic Institute and State University 91 Participants, 17 Insitutions, 6 Countries Paris, France L'Aquila, Italy Assergi, Italy Genoa, Italy Milano, Italy Perugia, Italy Gachina, Russia Haamburg, Germany Cracow, Poland Dubna, Russia Moscow, Russia Heidelberg, Germany Princeton NJ, USA Muenchen, Germany Amherst MA, USA Moscow, Russia Blacksburg VA, USA ## The End #### Radioactivity in purified water- A plausible explanation of our background problems - 1. Ground water at LNGS has high level of ²²²Rn and its progeny, ²¹⁰Pb and ²¹⁰Po. - 2. Standard water purification systems based on reverse osmosis and ion exchange were found to remove ²¹⁰Pb and ²¹⁰Po with low efficiencies. - 3. Distillation removes ²¹⁰Pb, but not ²¹⁰Po. - 210Po in ground water is processed biologically by micro-organism into volatile dimethyl polonium. - With estimated boiling point of 138 C, the ²¹⁰Po is difficult to remove from water by simple distillation. # ²¹⁰Pb and ²¹⁰Po Mysteries Explained? - 1. Borexino was first filled with water irctly from the water purification system without distillation. - This water was contaminated with ²¹⁰Pb and ²¹⁰Po and would have contaminated the nylon vessel with ²¹⁰Pb, as observed. - 2. The PPO was purified by water extraction and distillation before it was mixed with PC to make the scintillator. - The water would have introduced both ²¹⁰Po and ²¹⁰Pb, and distillation would have removed the ²¹⁰Pb. - The two operations would leave the scintillator with a high level of ²¹⁰Po, and low level of ²¹⁰Pb, as observed. - 3. The failure of water extraction to reduce ²¹⁰Po in scintillator could have been due to ²¹⁰Po in the water.