Search for double beta processes in ¹⁰⁶Cd and ¹¹⁶Cd with enriched ¹⁰⁶CdWO₄ and ¹¹⁶CdWO₄ crystal scintillators

<u>V.I. Tretyak^{a,b}</u>, A.S. Barabash^c, P. Belli^{d,e}, R. Bernabei^{d,e}, V.B. Brudanin^f,
 F. Cappella^g, V. Caracciolo^g, R. Cerulli^g, D.M. Chernyak^a, F.A. Danevich^a,
 S. d'Angelo^{d,e}, A. Incicchitti^{b,h}, V.V. Kobychev^a, S.I. Konovalov^c,
 M. Laubenstein^g, V.M. Mokina^a, D.V. Poda^{a,i}, O.G. Polischuk^{a,b},
 V.N. Shlegel^j, I.A. Tupitsyna^k, V.I. Umatov^c, Ya.V. Vasiliev^j

^a Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
^b INFN, sezione di Roma "La Sapienza", I-00185 Rome, Italy
^c Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
^d Dipartimento di Fisica, Universita di Roma "Tor Vergata", I-00133 Rome, Italy
^e INFN sezione Roma "Tor Vergata", I-00133 Rome, Italy
^f Joint Institute for Nuclear Research, 141980 Dubna, Russia
^g INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
^h Dipartimento di Fisica, Universita di Roma "La Sapienza", I-00185 Rome, Italy
ⁱ Centre de Sciences Nucleaires et de Sciences de la Matiere, 91405 Orsay, France
^j Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
^k Institute of Scintillation Materials, 61001 Kharkiv, Ukraine

Contents:

- 1. Introduction and motivation
- 2. R&D for ¹⁰⁶CdWO₄
- 3. Experimental setup and measurements
- 4. Results for ¹⁰⁶Cd
- 5. R&D for ¹¹⁶CdWO₄
- 6. Experimental setup and measurements
- 7. Results for ¹¹⁶Cd
- 8. Conclusions

Double beta decay: $(A,Z) \rightarrow (A,Z\pm 2)$

 $\begin{array}{ll} \mbox{Allowed in SM:} \\ (A,Z) \rightarrow (A,Z+2) + 2e^- + 2v_e & - \mbox{two-neutrino } 2\beta^- \mbox{decay} & \textcircled{O} & \textcircled{O} & \swarrow \\ \hline \mbox{Forbidden in SM, } \Delta L = 2: \\ (A,Z) \rightarrow (A,Z+2) + 2e^- & - \mbox{neutrinoless } 2\beta^- \mbox{decay} & \textcircled{O} & \textcircled{O} & \swarrow \\ \hline \mbox{-} - 2\beta^- 0v \mbox{decay with Majoron emission} \end{array}$

 $2\beta^{+}/\epsilon\beta^{+}/2\epsilon$ processes, decays to excited states, different Majorons ...

```
2β0v requires: v_e = -v_e (Majorana particle)
m(v_e)≠0 (or right-handed admixtures, ...)
```

Many extensions of the SM predict $m(v_e) \neq 0$ and, as a result, $2\beta 0v$ processes. Experimental observation of this exotic phenomenon would be an unambiguous signal of new physics which lies beyond the SM.

 β^- , β^+ energetically forbidden $2\beta^-$, $2\beta^+$ allowed

 e_1+e_2 energy spectra in different 2β modes

Status of experimental investigations of 2β decay

2 β⁻	2 β+/εβ+/2ε
35 candidates	34 candidates
Nat. abundances δ ~ (5-10-100)%	Typical δ < 1% with few exclusions
$Q_{2\beta}$ up to 4.3 MeV	$Q_{2\beta} > 2$ MeV only for 6 nuclides
2β2v is registered for 11 nuclei (⁴⁸ Ca, ⁷⁶ Ge, ⁸² Se, ⁹⁶ Zr, ¹⁰⁰ Mo, ¹¹⁶ Cd, ¹²⁸ Te, ¹³⁰ Te, ¹³⁶ Xe, ¹⁵⁰ Nd, ²³⁸ U) with $T_{1/2} = 10^{18} - 10^{24}$ yr	2ε2ν - ¹³⁰ Ba ? (T _{1/2} ~ 10 ²¹ yr) - ⁷⁸ Kr ? (T _{1/2} ~ 10 ²² yr)
Sensitivity to $2\beta 0v$ up to 10^{25} yr	Sensitivity to $0v$ up to 10^{21} yr

One positive claim on observation of $2\beta^{-}0\nu$ in ⁷⁶Ge by part of HM (T_{1/2} = 2.2×10²⁵ yr), on the edge of current sensitivity of GERDA (2.1×10²⁵ yr)

2β+/εβ+/2ε studies are less popular but nevertheless: Information from 2β+/εβ+/2ε is supplementary to 2β⁻ (possible contributions of right-handed currents to 0v, M. Hirsch et al., ZPA 347 (1994) 151)

¹⁰⁶Cd is attractive because of:

- (1) $Q_{2\beta} = 2775.39 \pm 0.10 \text{ keV} \text{one of only six } 2\beta^+ \text{ nuclides}$
- (2) Quite high natural abundance $\delta = 1.25\%$
- (3) Possibility of resonant $2\epsilon_0 v$ captures to excited levels of daughter ¹⁰⁶Pd (2718 keV 2K0v, 2741 keV KL₁0v, 2748 keV KL₃0v)
- (4) Theoretical $T_{1/2}$ are quite optimistic for some modes (g.s. \rightarrow g.s.): $2\epsilon^2\nu - (2.0-2.6)\times 10^{20}$ yr [1], $- 4.8\times 10^{21}$ yr [2], $\epsilon\beta^+2\nu - (1.4-1.6)\times 10^{21}$ yr [1],
 - 2.9×10²² yr [2]
 - [1] S. Stoica et al., EPJA 17 (2003) 529 [2] J. Suhonen, PRC 86 (2012) 024301

Decay scheme of ¹⁰⁶Cd

Current experiments to search for 2 β processes in ¹⁰⁶Cd

(1) TGV-2: 32 planar HPGe + 16 foils of ¹⁰⁶Cd (δ=75%), LSM (France) T_{1/2} limits for different modes: ~ 10²⁰ yr [N.I. Rukhadze et al., NPA 852 (2011) 197, BRASP 75 (2011) 879]

 (2) COBRA: 32/64 semiconductors CdZnTe 1 cm³ each, LNGS (Italy) T_{1/2} limits for different modes: ~ 10¹⁸ yr [K. Zuber, Prog. Part. Nucl. Phys. 64 (2010) 267]

 (3) First stage of our measurements with ¹⁰⁶CdWO₄ crystal scintillator (without HPGe), LNGS (Italy)
 T_{1/2} limits for different modes: ~ 10²⁰–10²¹ yr (mostly the best limits) [P. Belli et al., PRC 85 (2012) 044610]

R&D for ¹⁰⁶CdWO₄

Purification of enriched ^{nat}Cd & ¹⁰⁶Cd by vacuum distillation (~ 0.1 ppm; Kharkiv Phys. Techn. Institute, Kharkiv, Ukraine); Synthesis of CdWO₄ & ¹⁰⁶CdWO₄ powders; Growth of ^{nat}CdWO₄ of improved quality (Czochralski method). [R. Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477]

Growth of 106 CdWO₄ crystals by Low-Thermal-Gradient Czochralski technique (Nikolaev Institute of Inorg. Chem., Novosibirsk, Russia): output ~90%, loss of powder <0.3%, better quality and radiopurity [P. Belli et al., NIMA 615 (2010) 301]

Example of CdWO₄ grown by the LTG Cz technique (20 kg) [V.V. Atuchin et al., J. Solid State Chem., in press]

¹⁰⁶CdWO₄ crystal scintillators (¹⁰⁶Cd enrichment – 66%)

Attenuation length 60 cm (the best reported for CdWO₄)

¹⁰⁶CdWO₄ boule 231 g (87.2% of initial charge) Total irrecoverable losses of ¹⁰⁶Cd = 2.3%

¹⁰⁶CdWO₄ scintillator 215 g

Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-Thermal-Gradient Czochralski technique to grow the crystal [P. Belli et al., NIMA 615 (2010) 301]

1st stage: ¹⁰⁶CdWO₄ scintillator in low background DAMA/R&D set-up 2nd stage: ¹⁰⁶CdWO₄ in coinc./anticoincidence with 4 HPGe detectors

To suppress radioactivity from PMT, PbWO₄ light-guide is used. It is grown from archeological lead: A(²¹⁰Pb) < 0.3 mBq/kg [F.A. Danevich et al., NIMA 603 (2009) 328]

¹⁰⁶CdWO₄ in the GeMulti setup with 4 HPGe detectors (in one cryostat)

4 HPGe, ~ 225 cm³ each, in one cryostat

¹⁰⁶CdWO₄ in coincidence/ anticoincidence with HPGe

Detection efficiency ~ 5 – 7%

External shield: radiopure Cu + Pb, sealed in PMMA air-tight box flushed by nitrogen

Laboratori Nazionali del Gran Sasso 3600 m w.e.

Background expected to be several events during year

Estimated sensitivity to two neutrino $\epsilon\beta^+$ and $2\beta^+$ in 106 Cd: T_{1/2} ~ $10^{20} - 10^{21}$ yr Theory: $2\nu2K \ 10^{20} - 5 \times 10^{21}$ yr $2\nu\epsilon\beta^+ \ 8 \times 10^{20} - 4 \times 10^{22}$ yr

DAQ:

time and energy for each HPGe;

shape of signal (in time) for ¹⁰⁶CdWO₄ (>580 keV); different triggers (c/ac)

Calibration: ²²Na, ⁶⁰Co, ¹³⁷Cs, ²²⁸Th ¹⁰⁶CdWO₄ – FWHM_{γ} = (20.4×E_{γ})^{1/2}

²²Na:

no coincidence with HPGe and coincidence with 511 keV in HPGe

Nice agreement with EGS4 simulations (solid lines)

Spectrum of ¹⁰⁶CdWO₄ (β/γ events) measured during 6590 h (anticoincidence with HPGe) [F.A. Danevich et al., AIP CP 1549 (2013) 201]

Internal contamination of ¹⁰⁶CdWO₄

^{113m}Cd activity 116(4) Bq/kg (it seems that before enrichment, Cd was used as a shielding somewhere at reactor)

Shape indicator Overlapped pulses $(\beta^{113}Cd^m)$ $\gamma(\beta)$ 10000 Counts/channel α γ (β 8000 8000 10000 12000 Shape indicator 1000 2000 3000 4000 Energy (keV)

Pulse-shape discrimination: total α activity 2.1(2) mBq/kg

Time-amplitude analysis: ²²⁸Th 0.042(2) mBq/kg

Chain	Nuclide	Activity (mBq/kg)
²³² Th	²³² Th	≤ 0.07
	²²⁸ Th	0.042(4)
²³⁸ U	²³⁸ U	≤ 0.6
	²²⁶ Ra	0.012(3)
	⁴⁰ K	≤ 1.4
	^{113m} Cd	116(4) × 10 ³

[F.A. Danevich et al., AIP CP 1549 (2013) ¹³/₂01]

¹⁰⁶CdWO₄ energy spectra measured during 13085 h

 In anticoincidence with the HPGe detectors (AC);
 In coincidence with HPGe when energy release in at least one HPGe detector is E(HPGe) > 50 keV (CC >50);
 In coincidence with E(HPGe) = 511 keV (CC 511)

All the spectra contain 95% of $\gamma(\beta)$ events selected by PSD

HPGe energy spectra (sum of 4 detectors) over 13085 h

¹⁰⁶CdWO₄ in anticoincidence with HPGe

Simulations (EGS4 + DECAY0 event generator): ¹⁰⁶CdWO₄ contaminations PMT PbWO₄ Cu shield Al cryostat

Energy spectrum of $\gamma(\beta)$ events in ¹⁰⁶CdWO₄ accumulated over 13085 h (points) in anticoincidence with HPGe together with the background model (red continuous line).

Main components of the background are shown: internal K, Th and U; external γ from K, U and Th contamination of the set-up in 16

Simulation of 2β processes in ¹⁰⁶Cd: EGS4 + DECAY0 event generator

DECAY0: O.A. Ponkratenko et al., Phys. At. Nucl. 63 (2000) 1282

¹⁰⁶CdWO₄ in coincidence with 511 keV in HPGe

Energy spectrum of the ¹⁰⁶CdWO₄ detector accumulated over 13085 h in coincidence with 511 keV annihilation γ quanta at least in one of the HPGe detectors (circles).

The Monte Carlo simulated distributions for different modes of 2ν and $0\nu 2\epsilon$, $\epsilon\beta^+ 2\beta^+$ decays are shown.

Limits (preliminary) on 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes in ¹⁰⁶Cd

Decay, level of	<i>T</i> _{1/2} (yr) at 90% C.L.				
¹⁰⁰ Pd (keV)	Present wo	Present work		Previous limit	
2ν2ε, 0 ₁ + 1134	≥ 9.0×10 ²⁰	(AC)	≥ 1.7:	×10 ²⁰ [1]	
0 ν2ε, g.s.	\geq 2.7×10 ²⁰	(AC)	≥ 1.0 :	×10 ²¹ [1]	
2 νεβ⁺, g.s.	≥ 1.9 ×10 ²¹	(CC 511)	≥ 4.1 :	×10 ²⁰ [2]	
2 νεβ+, 0 ₁ + 1134	≥ 1.4 ×10 ²¹	(CC 511)	≥ 3.7 :	×10 ²⁰ [1]	
0 νεβ+, g.s.	≥ 1.6 ×10 ²¹	(CC >50)	≥ 2.2 :	×10 ²¹ [1]	
2ν2β⁺, g.s.	≥ 5.5 ×10 ²¹	(CC 511)	≥ 4.3 ≿	×10 ²⁰ [1]	
0 ν 2 β ⁺ , g.s.	≥ 2.2 ×10 ²¹	(CC 511)	≥ 1.2 :	×10 ²¹ [1]	
0∨2 <i>K</i> , 2718	≥ 8.3 ×10 ²⁰	(CC 511)	≥ 4.3 ≿	×10 ²⁰ [1]	
0∨ <i>KL</i> ₁ , 4⁺ 2741	\geq 5.0×10 ²⁰	(HPGe)	≥ 9.5 ≿	×10 ²⁰ [1]	
0∨ <i>KL</i> ₃ , 2,3 [–] 2748	≥ 8.7 ×10 ²⁰	(HPGe)	≥ 4.3 ≿	×10 ²⁰ [1]	
		[1] P Re	li et al	PRC 85 (2	

[1] P. Belli et al., PRC 85 (2012) 044610[2] P. Belli et al., APP 10 (1999) 115

Also limits for 2 β processes to other excited levels of ¹⁰⁶Pd (512, 1128, 1134, 1562, 1706, 2001, 2278 keV) were set on the level of T_{1/2}~10¹⁹-10²¹ yr

2β physics with enriched ¹¹⁶CdWO₄ crystal scintillators

¹¹⁶Cd – one of the best candidates to search for $2\beta 0\nu$ decay:

- $-Q_{2\beta} = 2813.5(13) \text{ keV}$
- δ **= 7.5%**
- promising theoretical calculation
- isotopic enrichment in large amount by cheap centrifugation method

J.D. Vergados, H. Ejiri, F. Simkovic, RPP 75 (2012) 106301 – $m_v = 50$ meV

The most sensitive $2\beta 0\nu$ experiments (90% C.L.):

- Solotvina, F.A. Danevich et al., PRC 68 (2003) 035501 T_{1/2} > 1.7e23 yr
- NEMO-3, R.B. Pahlka et al., Phys. Proc. 37 (2012) 1241 T_{1/2} > 1.3e23 yr

¹¹⁶CdWO₄ crystal scintillator

A.S. Barabash et al., JINST 6 (2011) P08011 Deep purification of ¹¹⁶Cd and W LTG Cz technique to grow the crystal Good optical and scintillation properties

Initial boule, 1868 g (87% of initial charge)

Enrichment in ¹¹⁶Cd – 82%

Irrecoverable ¹¹⁶Cd losses <3%

The optical transmission curve of ¹¹⁶CdWO₄ before and after annealing

Attenuation length is 60 cm

Experimental set-up with ¹¹⁶CdWO₄ scintillator

Two ¹¹⁶CdWO₄ crystals, $m_{tot} = 1.162 \text{ kg}$ DAMA/R&D low-background set-up External shielding – Cu, Pb, polyethylene, Cd, air-tight with N₂ flashing Laboratori Nazionali del Gran Saso, 3600 m w.e. Start of experiment – 2011

Last upgrade – March 2014. Bkg at 2.7–2.9 MeV ~0.1 c/(yr×kg×keV)

Pulse shape discrimination (PSD) between $\beta(\gamma)$ and α particles

Front-edge analysis (FEA) to select ²¹²Bi-²¹²Po events

Two neutrino double beta decay of ¹¹⁶Cd

 $T_{1/2} = [2.51 \pm 0.02(stat.) \pm 0.14(syst.)] \times 10^{19} yr$ S/B ratio = 2.6 in 1.1–2.8 MeV interval

¹¹⁶CdWO₄ response to 2 β processes in ¹¹⁶Cd (EGS4 + DECAY0)

Limit on $2\beta 0\nu$ decay of ¹¹⁶Cd to g.s. of ¹¹⁶Sn

Fit in 2.5–3.1 MeV χ^2 /n.d.f.=1.13 S = 2.1 ± 6.8 counts lim S = 13.3 counts 90% C.L. FC T_{1/2} > 1.6×10²³ yr

(Simple square root estimation: $T_{1/2} \ge 1.5 \times 10^{23}$ yr 90% C.L.)

On the level of Solotvina ($T_{1/2} > 1.7 \times 10^{23}$ yr) and NEMO-3 ($T_{1/2} > 1.6 \times 10^{23}$ yr) results

Effective Majorana neutrino mass:

 $\langle m_v \rangle \sim 1.7 \text{ eV}$ $\langle m_v \rangle \sim 1.4 - 1.8 \text{ eV}$ J. Barea et al., PRL 109 (2012) 042501 J.D. Vergados et al., RPP 75 (2012) 106301

Results for ¹¹⁶Cd 2β decay (preliminary, data taking is in progress)

Decay mode	Transition	T _{1/2} , yr [present results]	T _{1/2} , yr [1]
0 v	g.s g.s.	≥1.6×10 ²³	≥1.7×10 ²³
0ν	g.s 2 ⁺ (1294 keV)	≥ 5.8 ×10 ²²	≥ 2.9 ×10 ²²
0 v	g.s 0+ (1757 keV)	≥ 7.8 ×10 ²²	≥1.4×10 ²²
0ν	g.s 0 ⁺ (2027 keV)	≥4.5×10 ²²	≥ 0.6 ×10 ²²
0 v	g.s 2 ⁺ (2112 keV)	≥ 2.9 ×10 ²²	
0 v	g.s 2 ⁺ (2225 keV)	≥4.0×10 ²²	
0∨M1	g.s g.s.	≥0.2×10 ²²	≥ 0.8 ×10 ²²
0∨M2	g.s g.s.	≥ 0.9 ×10 ²¹	≥ 0.8 ×10 ²¹
0∨bM	g.s g.s.	≥ 0.8 ×10 ²¹	≥1.7×10 ²¹
2v	g.s g.s.	[2.51±0.14(syst.)±0.02(stat.)]×10 ¹⁹	2.9 ^{+0.4} -0.3 × 10 ¹⁹
2v	g.s 2 ⁺ (1294 keV)	≥0.5×10 ²¹	≥2.3×10 ²¹ [2]
2v	g.s 0 ⁺ (1757 keV)	≥1.1×10 ²¹	≥ 2.0 ×10 ²¹ [2]
2v	g.s 0+ (2027 keV)	≥0.9×10 ²¹	≥2.0×10 ²¹ [2]
2v	g.s 2 ⁺ (2112 keV)	≥1.7×10 ²¹	
2v	g.s 2+ (2225 keV)	≥1.6×10 ²¹	

[1] F.A. Danevich et al., PRC 68 (2003) 035501 [2] A. Piepke et al., NPA 577 (1994) 493

Possibility to improve the radiopurity of ¹¹⁶CdWO₄ by re-crystallization

²²⁸Th in the initial ¹¹⁶CdWO₄ powder ~1.4 mBq/kg Thorium expected to be reduced by a factor ~35 \rightarrow 1 µBq/kg We expect to reduce K, Th, U and Ra contamination by recrystallization \Rightarrow reduction of the background by a factor 4 \Rightarrow advancing the 2 β 0v sensitivity to ~ 5×10²³ yr ²⁹

Conclusions

- Two unique radiopure high quality CdWO₄ crystal scintillators were developed: with enriched ¹⁰⁶Cd (66%, mass of 215 g) and enriched ¹¹⁶Cd (82%, mass of 1162 g);
- 2. Measurements at LNGS: ¹⁰⁶CdWO₄ 13085 h (finished); ¹¹⁶CdWO₄ 8397 h in the last modification (data taking, bkg at 2.7–2.9 MeV ~0.1 c/(yr×kg×keV);
- 3. $\epsilon\beta^+0\nu/2\beta^+0\nu$ processes in ¹⁰⁶Cd are sensitive to $2\beta0\nu$ mechanism (mass or right-handed currents). New limits on 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes in ¹⁰⁶Cd to g.s. and excited levels were set on the level of $T_{1/2} > 10^{20} - 10^{21}$ yr. Half-life limit $T_{1/2}(\epsilon\beta^+2\nu) > 1.9\times10^{21}$ yr reached the region of theoretical predictions;
- 4. For ¹¹⁶Cd, 2β2v half-life is measured as $T_{1/2}(2v2\beta) = [2.51 \pm 0.02(stat.) \pm 0.14(syst.)] \times 10^{19}$ yr (in agreement with previous measurements). For 2β0v, $T_{1/2}(0v2\beta) \ge 1.6 \times 10^{23}$ yr at 90% C.L. is on the level of the Solotvina (1.7×10²³ yr) and NEMO-3 (1.3×10²³ yr) results ($\langle m_v \rangle < 1.4 - 1.8 \text{ eV}$). New improved limits for 2β0v decays to excited levels ($\lim T_{1/2} \sim (2.9-7.8) \times 10^{22}$ yr);
- 5. Possibility to increase experimental sensitivity: in ${}^{106}CdWO_4$ experiment – change of HPGe to close high efficiency CdWO₄ 30 scintillation counters; in ${}^{116}CdWO_4$ – re-crystallization of the crystal.

Thanks for your attention!

Current experiments to search for 2 β processes in ¹⁰⁶Cd

(1) TGV-2: 32 planar HPGe + 16 foils of ¹⁰⁶Cd (δ=75%), LSM (France) T_{1/2} limits for different modes: ~ 10²⁰ yr N.I. Rukhadze et al., NPA 852 (2011) 197, BRASP 75 (2011) 879

PASSIVE SHIELDING

 (2) COBRA: 32 semiconductors CdZnTe 1 cm³ each, LNGS (Italy) T_{1/2} limits for different modes: ~ 10¹⁸ yr K. Zuber, Prog. Part. Nucl. Phys. 64 (2010) 267 (3) Our previous measurements with ¹⁰⁶CdWO₄ crystal scintillator, LNGS (Italy)
 T_{1/2} limits for different modes: ~ 10²⁰–10²¹ yr (mostly the best limits)
 P. Belli et al., PRC 85 (2012) 044610

 R&D: Purification of enriched ^{nat}Cd & ¹⁰⁶Cd by vacuum distillation (~ 0.1 ppm; Kharkiv Phys. Techn. Institute, Kharkiv, Ukraine); Synthesis of CdWO₄ & ¹⁰⁶CdWO₄ powders; Growth of ^{nat}CdWO₄ of improved quality (Czochralski method). R. Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477

Growth of ¹⁰⁶CdWO₄ crystals by Low-Thermal-Gradient Czochralski technique (Nikolaev Institute of Inorg. Chem., Novosibirsk, Russia): output ~90%, loss of powder <0.3%, better quality and radiopurity P. Belli et al., NIMA 615 (2010) 301

¹⁰⁶CdWO₄ crystal scintillators (¹⁰⁶Cd enrichment – 66%)

¹⁰⁶CdWO₄ scintillator 215 g

Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-Thermal-Gradient Czochralski technique to grow the crystal [P. Belli et al., NIMA 615 (2010) 301]

Low background scintillation detector with ¹⁰⁶CdWO₄ crystal scintillator

Low background scintillation set-up DAMA/R&D LNGS (Italy), 3600 m w.e.

