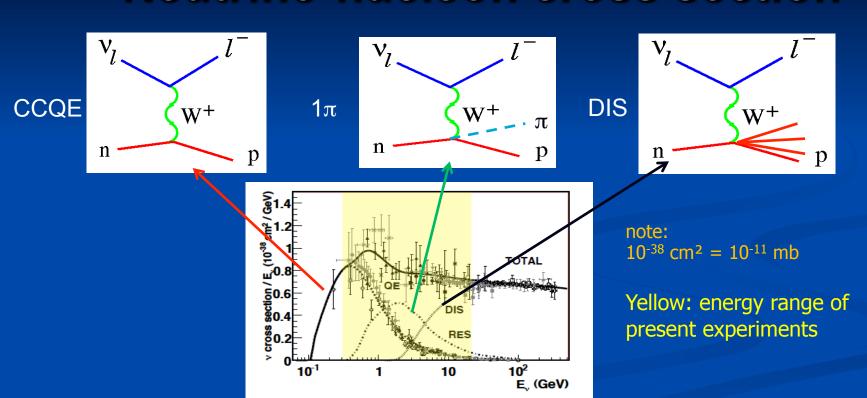
Neutrino Interactions and Long-Baseline Physics

Ulrich Mosel

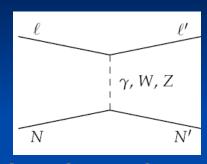


General Motivation

- Aspects of neutrino-nuclear reactions
 - Hadron physics:
 - axial couplings of nucleon resonances
 - reaction rates
 - Neutrino oscillation physics:
 - energy reconstruction
 - Dark Matter Background

Neutrino-nucleon cross section

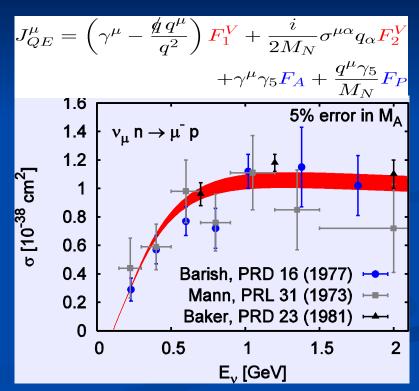
From: J.A. Formaggio, G.P. Zeller



Neutrino Cross Sections

- Cross sections on the *nucleon*:
 - QE
 - Resonance-Pion Production + Born terms
 - Deep Inelastic Scattering → Pions

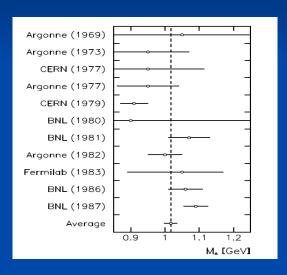
Quasielastic Scattering

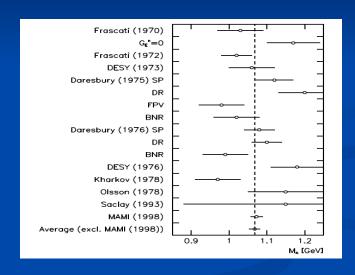


- Vector form factors from e –scattering
- axial form factors

 $F_A \Leftrightarrow F_P$ and $F_A(0)$ via PCAC dipole ansatz for F_A with

$$M_A$$
= 1 GeV:

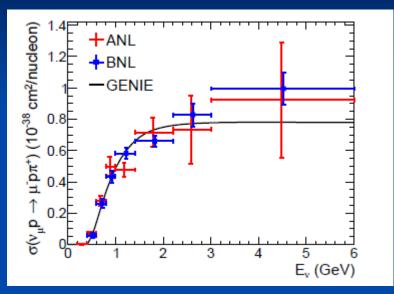

$$F_A(Q^2) = \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}$$



Axial Formfactor of the Nucleon

neutrino data agree with electro-pion production data

 $M_A \approx 1.02$ GeV world average $M_A \approx 1.07$ GeV world average Dipole ansatz is simplification, not good for vector FF


Pion Production

$$\begin{split} J_{\Delta}^{\alpha\mu} = & \left[\frac{C_{3}^{V}}{M_{N}} (g^{\alpha\mu} \not q - q^{\alpha} \gamma^{\mu}) + \frac{C_{4}^{V}}{M_{N}^{2}} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C_{5}^{V}}{M_{N}^{2}} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_{5} \\ & + \frac{C_{3}^{A}}{M_{N}} (g^{\alpha\mu} \not q - q^{\alpha} \gamma^{\mu}) + \frac{C_{4}^{A}}{M_{N}^{2}} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C_{5}^{A} g^{\alpha\mu} + \frac{C_{6}^{A}}{M_{N}^{2}} q^{\alpha} q^{\mu} \end{split}$$

- pion production dominated by P₃₃(1232) resonance
- C^V(Q²) from electron data (MAID analysis with CVC)
- $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^{A}_{5} determined, for other axial FFs only educated guesses

Pion Production

Reanalysis of BNL data (posthumous flux correction) by T2K group:
C.Wilkinson et al,
Arxiv:1411:4482 [hep-ex]

Agrees with earlier findings in Graczyk et al, Phys.Rev. D80 (2009) 093001 Lalakulich et al, Phys.Rev. D82 (2010) 093001

C. Wilkinson et al, arXiv:1411.4482 [hep-ex]

One pion puzzle solved: ANL data preferable, but only C₅ determined BUT: Sato et al find extraction of p X-section from D-measurement doubtful!

Neutrino Cross Sections

- Cross sections on the nucleus:
 - QE + fsi
 - Resonance-Pion Production + reabsorption
 - Deep Inelastic Scattering → Pions + reabsorpt
- Additional cross section on the *nucleus*:
 - Many-body effects, e.g., 2p-2h excitations
 - Coherent neutrino scattering and pion production

- GiBUU: Theory and Event Simulation
 based on a BM solution of Kadanoff-Baym equations
- Physics content: Buss et al, Phys. Rept. 512 (2012) 1
- code available : http://gibuu.hepforge.org
- Gibuu describes (within the same unified theory and code)
 - heavy ion reactions, particle production and flow
 - pion and proton induced reactions
 - low and high energy photon and electron induced reactions
 - neutrino induced reactions

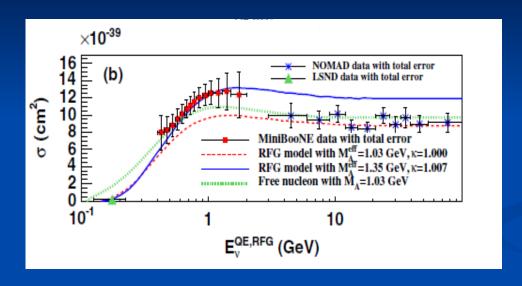
.....using the same physics input! And the same code!

Transport Equation

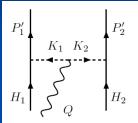
Collision term

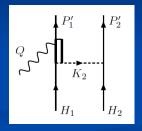
$$\mathcal{D}F(x,p)+\mathrm{tr}\left\{\mathrm{Re}\tilde{S}^{\mathrm{ret}}(x,p),-\mathrm{i}\tilde{\Sigma}^{<}(x,p)\right\}_{\mathrm{pb}}=C(x,p).$$

Drift term


$$\left[\left(1 - \frac{\partial H}{\partial p_0} \right) \frac{\partial}{\partial t} + \frac{\partial H}{\partial \mathbf{p}} \frac{\partial}{\partial \mathbf{x}} - \frac{\partial H}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{p}} + \frac{\partial H}{\partial t} \frac{\partial}{\partial p^0} + \text{KB term} \right] F(x, p) \\
= - \text{loss term} + \text{gain term}$$

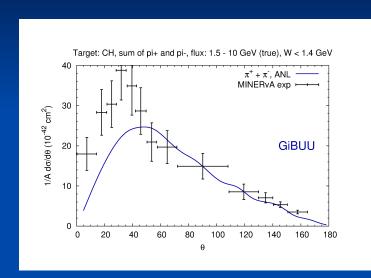
$$F(x, p) = 2\pi g f(x, p) A(x, p).$$

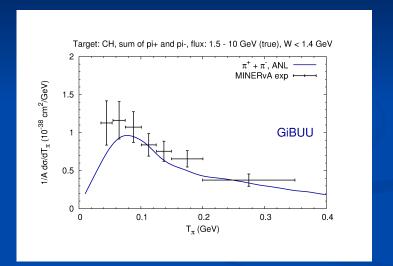

Spectral function



CCQE and Many-Body Interactions

MiniBooNE

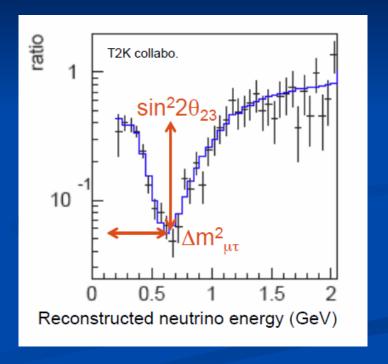




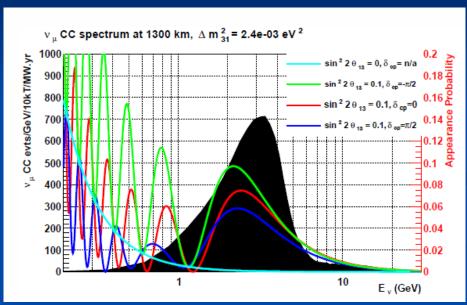
QE-like = CCQE + 2p2h + stuck pions

MinervA Pions

Discrepancy at small Θ/T_{π} , Coherent contribution?


Neutrino Oscillations

- State of affairs:
 - All mixing angles are known, with some errors
 - Mass hierarchy not known
 - Possible CP violating phase not known
- Errors determined by total event rates and energy reconstruction:
 - How well do we have to know the neutrino energy?

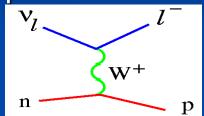

Observable Oscillation Parameters

$$P(
u_{\mu}
ightarrow
u_{e})=\sin^{2}2 heta\sin^{2}\left(rac{lacktriangledown^{2}L}{4E_{
u}}
ight)$$

LBNE, δ_{CP} Sensitivity

Appearance probability:

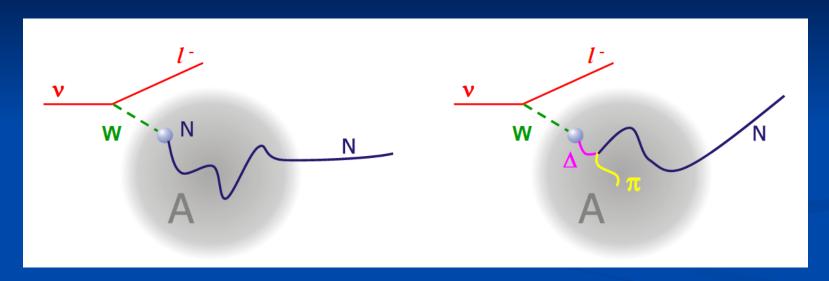
$$P_{\mu \rightarrow e}$$


Need energy to distinguish between different δ_{CP}

Need to know neutrino energy to better than about 100 MeV

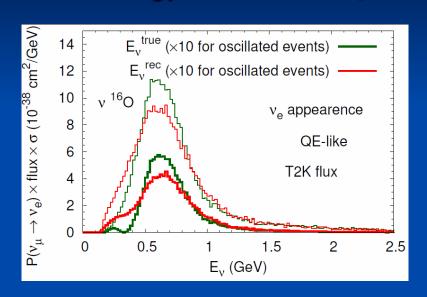
Energy Reconstruction by QE

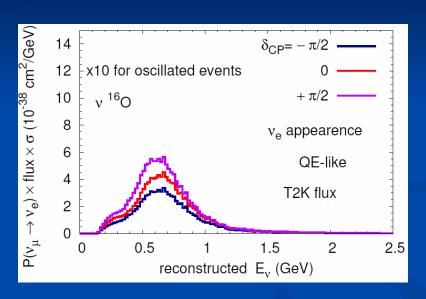
In QE scattering on neutron at rest, only l +p, 0 π is outgoing. lepton determines neutrino energy:



$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

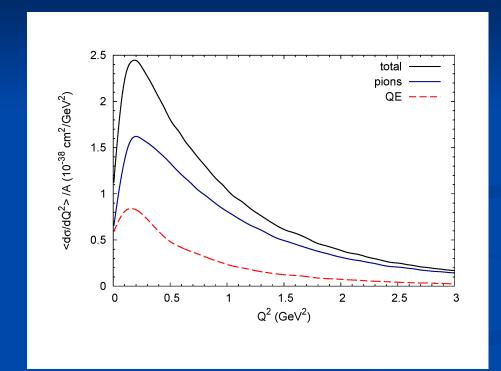
- Trouble: all presently running exps use nuclear targets
- 1. Nucleons are Fermi-moving → smearing around correct energy
- Final state interactions hinder correct event identification
 → wrong energy reconstructed


FSI in Nuclear Targets



Complication to identify QE, **always** entangled with π production Both must be treated at the same time! ,pure' QE cannot be measured!!

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps



Uncertainties due to energy reconstruction(left) as large as δ_{CP} dependence (right)

QE vs. Pion Production at DUNE

Target: ⁴⁰Ar

Pions: Resonance + DIS QE: ,true' QE + 2p2h

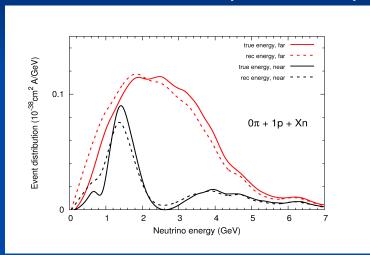
QE $\approx 1/3$ total Pions $\approx 2/3$ total

QE Energy Reconstruction fo DUNE

Muon survival in 0 pion sample

Dashed: reconstructed, solid: true energy

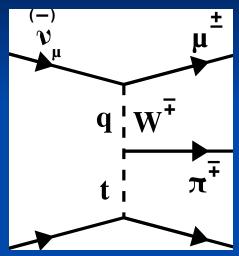
All calculations from GiBUU

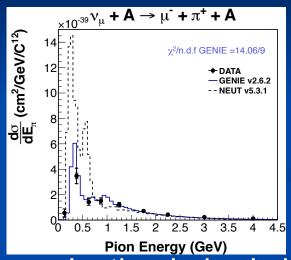

Mosel et al., Phys.Rev.Lett. 112 (2014) 151802

Nearly 500 MeV difference between true and reconstructed event distributions → not a useful method

QE Energy Reconstruction for DUNE

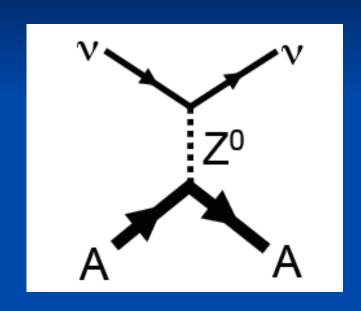
Muon survival in $0\pi + 1p + Xn$ sample




Dashed: reconstructed, solid: true energy

Dramatic improvement in 0 pi, 1p, Xn sample, down by only factor 3

Coherent CC Scattering


MINERvA PRL 113 (2014)

Theorie of coherent pion production in bad shape: results of PCAC based theories differ significantly

(2 curves in right figure)

Coherent NC Scattering

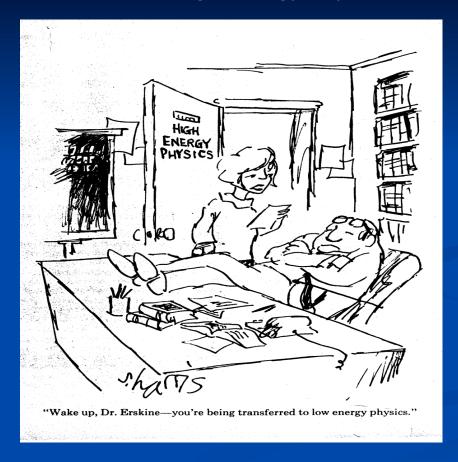
So far not observed

 $\sigma \sim N^2 E^2$ (N = neutron number)

Recoil energy

 $E_R \sim E^2/A$

Higher Cross section for large N, but smaller recoil
NDM15



Summary

- Elementary X-sections for neutrino-nucleon in range of 100 MeV to 20 GeV not well under control. Formfactors badly known (compared to electrons)
- Full event simulations needed to describe neutrino-nucleus interactions: quality of extracted neutrino properties depends directly on quality of generator
- No good theory for coherent pion production available, for coherent neutrino scattering so far no data
- Precision era experiments require precision era (new) generators

A wake-up call for the high-energy physics community:

Low-Energy
Nuclear Physics
determines response
of nuclei to neutrinos

