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Outline

» Motivation for Considering Low Threshold
Energy, Inelastic Processes

» A'Test Case - Molecules
» What is the physics involved?
» What approximations can be made?
» What do we expect to be able to measure?

» Onward to a Realistic Experiment
» What are the requirements?
» What can we do with crystals?
p Is the physics similar to molecular dissociation?
» What are the challenges?

Sunday, May 31, 15



1

T T ——
‘ O
—

5

Motivation = .~/

10~ T ‘ 10717
10~ T = 107!

| 1037 — — I
O
| 10-38 ¢ “”%%. 4
- Ai'JL
=391 CoGe | _
A 10 O &\ . o =
= 10~% L 0\ \\ \\ X COMS Si li~ &
S 107 YI:O/ \‘:\\t\ o/ swEe PP 292—107 ke
2 1072 ¢ = o \\‘\\ BN —os {10 2
7 250 1 5N |\ \ _ 2
é l()"‘u - ‘iihb.u‘..‘_ Xeﬂon\dﬂ)m: 10 7 E
§ Neutrinos UTr ‘88’ » E’
2 10707 - 1107 3
=2 Neutrinos =
! d
> >
= =
-

amno 57 -12
10— T iﬁNBNwmnOS 110
| l()—i‘) " Am'\osphenc 1 l()_l3
_ SN AN SRS . R = . SRS ()—14
10 | 10 100 1000 o

WIMP Mass [GeV/c?]
Billard,,

— e —

Figueroa-Feliciano, Strigari '14

Sunday, May 31, 15



Motivation
Why Inelastic Scattering?
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Bond Breaking in Low
Energy Threshold Systems

ATest Case |

 Threshold - few eV |




Ingredients for Calculating
the Detection Rate
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The Molecular

Form Factor
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The FF - The Wavefunction Overlap - Encodes the QM eftects

Sunday, May 31, 15



Understanding the Rate

' In principle we need to calculate initial and all |
| final states and sum over all angular momenta (L).
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Understanding the Rate

For various DM mass regimes we can make various
approximations:

—— e S e _ e — _

| b Classical Approach - no QM effects.

» The Born Approximation - no binding potential for final state.

» Improving the Born App. - Sommerfeld Enhancement

e
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The Classical Picture

> Good approximation for large values of angular momentum.
(large DM masses)

> No QM effects.

> The FF is proportional to a delta function:
(only kinematics is involved)
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» The average differential cross section:
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T'he Born Approximation

» Take the final state = free plane wave.

» Takes into account non-zero i (o ine e _k? /k o d KdK| / dPre KTy, (r)[2. *
momentum for initial state. ,g |

k,__mq

» No binding potential. \

> The FF is analytical. 15

» The peak is at the classical |
momentum transfer value. i )
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Improving the Born App.

» Account for binding energy by hand.

Bl olecular Wavetunctions for Eg=1 eV |

» The FF is analytical.

[eV]

» Peaks at the correct value.

» Equivalent to Sommerfeld Enhancement

|

p Very accurate |
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Expected Rates

Comparison of Event Rates for H, — i1 OF 1.7 eV[
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Ess1g, Slone, Mardon, Volansky (work in progress)
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Expected Sensitivity

ross Section Sensitivity and Event Rate

(per 1 kg yr)

——

|
|
|
\
\

AER=20 eV N atoms
AEp=8 eV H atoms
AEg=4.52eV H)y
AER=9.79 eV N,
AEg=2.51eV Cl,

Ess1g, Slone, Mardon, Volansky
(work in progress)
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Event Rate depends only on AE

| Event Rate for dlfferent Morse Potentlals
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Towards a Real Experiment

~ Chemical Bond Breaking
e Creation of Color Centers gy




Towards a Real Experiment
dome Requirements

‘ » Low Threshold Energy (realistically - 10 e\%.t -

» Background Discrimination:
» Differentiate between low / high energy events.
» Differentiate between nuclear / electron recoils.

ke Possible to detect / a signal enhancement mechanism.

» Ability to clean on short timescales.

|
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Towards a Real Experiment
Color Centers

|

» Threshold Energies of - 10-502:\7. I

» Enhancement via optical amplification. | i}

» Detection via fluorescent properties.
|

|> Annealing by temperature increase.
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Towards a Real Experiment
What has been done NV Centers

. DIAMOND LATTICE:

» Replace a C with an N

|> Create a vacancy

> Defect can have spin 0/1

|
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Color Centers

Can we use what we’ve learned about molecules?

p Calculating the FF is (in principle) the same:
» Solve the Schrodinger Equation for initial and final states
» Overlap and Integrate

» Theoretical Challenges:
» Time Dependent

But are the timescales similar?
» Not Spherical Symmetric

But is the wavefunction very localized?
» Are the approximations valid?

Classical / Born / Improved Born?

Work in Progress with Amit Abir, TAU
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Color Centers

Can we use what we’ve learned about molecules?

p Calculating the FF is (in principle) the same:
» Solve the Schrodinger Equation for initial and final states
» Overlap and Integrate

» Theoretical Challenges:
» Time Dependent

But are the timescales similar? YE S
» Not Spherical Symmetric
But is the wavefunction very localized? YE S

» Are the approximations valid?
Classical / Born / Improved Born? MAYBE

Work in Progress with Amit Abir, TAU
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Towards a Real Experiment

Prootf of Concept

| Laser Line Filter CC Light Guide Notch Filter

I

Excitation Fluorescence

Abir, Ashkenazi, Bloch, Budnik, Chesnovsky,
Devi, Essig, Itay, Kreisel, Landsman, Mardon,
Sagiv, Silver, Slone, Sofer, Volansky, et. al.
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Future Prospects |-

> Understanding Color Center.

» Proof of Concept for a real experiment.

» Additional Techniques.

B Sensitivity to Solar Neutrinos.
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