A TEL AUIU UNIUERSITY
אוניכרסיטת תל-אכיב

Inelastic Scattering, Molecules and Other Cool Stuff to Probe sub-GeV Dark Matter

Oren Slone, Tel Aviv University

In collaboration with: Tomer Volansky, Tel Aviv University Rouven Essig, Stony Brook Jeremy Mardon, Stanford

As well as: Abir, Ashkenazi, Bloch, Budnik, Chesnovsky, Devi, Itay, Kreisel, Landsman, Sagiv, Silver, Sofer, et. al. (later in talk)

Outline

Motivation for Considering Low Threshold Energy, Inelastic Processes

A Test Case - Molecules

E What is the physics involved? **What approximations can be made?** \triangleright What do we expect to be able to measure?

B Onward to a Realistic Experiment

E What are the requirements?

- **E** What can we do with crystals?
- Is the physics similar to molecular dissociation?
- **& What are the challenges?**

Motivation Why Inelastic Scattering?

$$
E_{elastic} \sim \frac{q^2}{2M} \sim 5 \text{ eV} \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)^2 \left(\frac{\text{GeV}}{M}\right)
$$

$$
E_{available} \sim \frac{1}{2} m_{\chi} v^2 \sim 50 \text{ eV} \cdot \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)
$$

Bond Breaking in Low Energy Threshold Systems

A Test Case: Chemical Bond Breaking in Molecules

Ingredients for Calculating the Detection Rate

The Molecular	
Form Factor	
$ \langle \Psi_f H_{int} \Psi_i \rangle ^2 \sim F_{dis}(q, \tilde{q}) ^2 = \frac{\tilde{q}^3}{(2\pi)^3} \int d\Omega_{\tilde{q}} \int d^3re^{i\frac{\mu_{12}}{m_1}q \cdot r} \psi_f^*(\mathbf{r}) \psi_i(\mathbf{r}) ^2$	
WaveFunction Overlap for 1=90	
0.4	Final State
0.2	2
0.4	WWW

The FF - The Wavefunction Overlap - Encodes the QM effects

Understanding the Rate

In principle we need to calculate the initial and all final states and sum over all angular momenta (L).

The Form Factor Integrated FF per L

Understanding the Rate

For various DM mass regimes we can make various approximations:

Execution Classical Approach - no QM effects.

• The Born Approximation - no binding potential for final state.

Improving the Born App. - Sommerfeld Enhancement

The Classical Picture

Good approximation for large values of angular momentum. (large DM masses)

No QM effects.

P The FF is proportional to a delta function: (only kinematics is involved)

$$
|F_{dis}(q,\tilde{k}')|^2 \sim \frac{\tilde{k}'^3}{(2\pi)^3} \delta^{(3)}(\frac{\mu_{12}}{m_1}\mathbf{q}-\tilde{\mathbf{k}}')
$$

E The average differential cross section:

$$
\left\langle \frac{d\sigma v}{dq^2} \right\rangle = A^2 \frac{\bar{\sigma}_n}{8\mu_{\chi 1}^2 v}
$$

The Born Approximation

 \triangleright Take the final state = free plane wave.

- **Example 3 Takes into account non-zero** momentum for initial state.
- No binding potential.
- **De The FF** is analytical.
- The peak is at the classical momentum transfer value.

$$
|F_{dis}(q,\tilde{k}')|^2=\frac{m_1}{\mu_{12}}\frac{\tilde{k}'^2}{(2\pi)^2}\int_{\tilde{k}'-\frac{\mu_{12}}{m_1}q}^{\tilde{k}'+\frac{\mu_{12}}{m_1}q}\frac{KdK}{q}|\int d^3re^{-i\mathbf{K}\cdot\mathbf{r}}\Psi_i(\mathbf{r})|^2.
$$

Improving the Born App.

 \triangleright Account for binding energy by hand. Molecular Wavefunctions for $E_R = 1$ eV

- **P** The FF is analytical.
- Peaks at the correct value.
- **▶ Equivalent to Sommerfeld Enhancement**

E Very accurate

Expected Sensitivity

Event Rate depends only on Δ*E*

Towards a Real Experiment

Chemical Bond Breaking in Crystals: Creation of Color Centers

Threshold - few 10 eV

Towards a Real Experiment Some Requirements

Example 3 Exercise Energy (realistically - 10 eV).

Background Discrimination: **Differentiate between low / high energy events. Differentiate between nuclear / electron recoils.**

Possible to detect / a signal enhancement mechanism.

Ability to clean on short timescales.

Towards a Real Experiment Color Centers

Execute 3 Threshold Energies of - 10-50 eV.

Enhancement via optical amplification.

Detection via fluorescent properties.

Annealing by temperature increase.

Can we use what we've learned about molecules?

Calculating the FF is (in principle) the same: **Solve the Schrodinger Equation for initial and final states B** Overlap and Integrate

B Theoretical Challenges:

Example Dependent But are the timescales similar? Not Spherical Symmetric But is the wavefunction very localized? Are the approximations valid? Classical / Born / Improved Born?

Can we use what we've learned about molecules?

Calculating the FF is (in principle) the same: **Solve the Schrodinger Equation for initial and final states B** Overlap and Integrate

B Theoretical Challenges:

Example Dependent But are the timescales similar? YES Not Spherical Symmetric But is the wavefunction very localized? Are the approximations valid? Classical / Born / Improved Born?

Can we use what we've learned about molecules?

Calculating the FF is (in principle) the same: **Solve the Schrodinger Equation for initial and final states B** Overlap and Integrate

B Theoretical Challenges:

Example Dependent But are the timescales similar? YES Not Spherical Symmetric But is the wavefunction very localized? YES Are the approximations valid? Classical / Born / Improved Born?

Can we use what we've learned about molecules?

Calculating the FF is (in principle) the same: **Solve the Schrodinger Equation for initial and final states B** Overlap and Integrate

B Theoretical Challenges:

Example Dependent But are the timescales similar? YES Not Spherical Symmetric But is the wavefunction very localized? YES Are the approximations valid? Classical / Born / Improved Born? MAYBE

B Understanding Color Center.

Proof of Concept for a real experiment.

Additional Techniques.

Sensitivity to Solar Neutrinos.

THANK YOU