Evidence for Dark Matter Self-Interactions via Collisionless Shocks in Cluster Mergers

MARTTI RAIDAL

NICPB, Tallinn, Estonia

Beyond WIMPs: from theory to detection May 29, 2015

M. Heikinheimo, M. Raidal, C. Spethmann, H. Veermäe, arXiv:[1504.04371 [hep-ph]] $+$ work in progress $1.7.147$

 Ω

[Motivations](#page-1-0)

[DM as pair plasma](#page-13-0) [The minimal model of dark plasma](#page-18-0) [Beyond the minimal dark plasma model](#page-25-0) [Conclusions and outlook](#page-28-0)

Contents

1 [Motivations](#page-1-0)

- 2 [DM as pair plasma](#page-13-0)
- **3** [The minimal model of dark plasma](#page-18-0)
- 4 [Beyond the minimal dark plasma model](#page-25-0)
- 5 [Conclusions and outlook](#page-28-0)

イロメ イ押メ イヨメ イヨメー

 \equiv

 Ω

Paradigm shift in DM physics: non-trivially interacting Dark Sector

- DM self-interactions may solve small-scale structure formation problems (core vs cusp, less substructure than in N-body simulations)
- **Studies of DM self-interaction have been considered** $2 \rightarrow 2$ scatterings
- The aim is to go beyond that and to study collective effects of DM interactions

イロメ イ母メ イヨメ イヨメーヨ

Astrophysical observations

 \blacksquare 1E 0657-558: in the bullet cluster, the dark matter halo of the subcluster is observed to pass through the main cluster [astro-ph/0309303].

イロメ イ母メ イヨメ イヨメー

 2990

 \equiv

The bullet cluster: 1E 0657-558

Constraints from the bullet cluster

■ Constraint on DM 2 \rightarrow 2 scattering cross section

$$
\frac{\sigma_{DM}}{m} < 1.3 \frac{\text{cm}^2}{\text{g}} \approx 2 \frac{\text{barn}}{\text{GeV}} \ll 100 \frac{\text{barn}}{\text{GeV}}
$$

E Less than 30% of DM can be self-interacting

イロメ イ母メ イヨメ イヨメーヨ

Structure formation: cluster merges

Astrophysical observations

- \blacksquare 1E 0657-558: in the bullet cluster, the dark matter halo of the subcluster is observed to pass through the main cluster [astro-ph/0309303].
- Abell 520: an excess of dark matter observed on top of the visible X-ray emitting gas, between the merging clusters [1401.3356 [astro-ph.CO]].

イロメ イ母メ イヨメ イヨメー

[Motivations](#page-1-0)

[DM as pair plasma](#page-13-0) [The minimal model of dark plasma](#page-18-0) [Beyond the minimal dark plasma model](#page-25-0) [Conclusions and outlook](#page-28-0)

Abell 520

MARTTI RAIDAL Evidence for Dark Matter Self-Interactions via Collisionless Shock

おんする

目

Abell 520: implications

- **The direct observational evidence for DM self-interactions**
- **Numerical simulations show that formation of new** sub-cluster in Abell 520 cannot be explained with DM $2 \rightarrow 2$ scatterings
- F. Kahlhoefer, K. Schmidt-Hoberg, M. T. Frandsen and S. Sarkar, Mon. Not. Roy. Astron. Soc. 437, 2865 (2014)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Astrophysical observations

- \blacksquare 1E 0657-558: in the bullet cluster, the dark matter halo of the subcluster is observed to pass through the main cluster [astro-ph/0309303].
- Abell 520: an excess of dark matter observed on top of the visible X-ray emitting gas, between the merging clusters [1401.3356 [astro-ph.CO]].
- Abell 3827: a separation between the dark matter halo and the visible stars observed in the central four galaxies [1504.03388 [astro-ph.CO]].

イロメ イ母メ イヨメ イヨメーヨー

[Motivations](#page-1-0)

[DM as pair plasma](#page-13-0) [The minimal model of dark plasma](#page-18-0) [Beyond the minimal dark plasma model](#page-25-0) [Conclusions and outlook](#page-28-0)

Abell 3827

イロメ イ団メ イ毛メ イ毛メー

E

Abell 3827: implications

- **Another direct observational evidence for DM** self-interactions
- The drag force can be created by DM $2 \rightarrow 2$ scatterings or collective effects

イロメ イ母メ イヨメ イヨメート

 2990

 \equiv

[Motivations](#page-1-0)

- 2 [DM as pair plasma](#page-13-0)
- **3** [The minimal model of dark plasma](#page-18-0)
- 4 [Beyond the minimal dark plasma model](#page-25-0)
- 5 [Conclusions and outlook](#page-28-0)

イロメ イ母メ イヨメ イヨメー

 \equiv

 Ω

Observational implications for DM

- Sub-component of DM must behave in collisions as ionized gas: must be able to dissipate energy
	- The double-disc DM?
- The halo must remain tri-axial: should not radiate effectively to cool to a disc
- \blacksquare The suitable DM candidate: pair plasma of particles with mass m

イロメ イ母メ イヨメ イヨメー

 Ω

Plasma

Plasma is a fluid, where

- \blacksquare the size of the fluid is large compared to the Debye shielding length $\lambda_D=\sqrt{\frac{7}{4\pi c}}$ $\frac{1}{4\pi\alpha n}$ (bulk interactions dominate over surface effects),
- collective effects are present: $\Lambda = \frac{4\pi}{3} \lambda_D^3 n \gg 1$,
- electrostatic interactions dominate over $2 \rightarrow 2$ scattering: $\omega_{\bm p} = \sqrt{\frac{4\pi\alpha n}{m}} \gg \mathsf{\Gamma}_{2\to 2}.$

イロメ イ母メ イヨメ イヨメーヨー

Collisionless shocks

In counter-streaming plasma, electromagnetic instabilities can cause shock waves that lead to energy dissipation even if the mean free path determined by the $2 \rightarrow 2$ scattering is much larger than the size of the system [1502.00626 [physics.plasm-ph]].

Collisionless shocks

- Gollisionless shocks are observed e.g. in the Earth's bow shock, in the expansion of supernova remnants into the interstellar medium and in X-ray emitting hydrogen plasma in galaxy collisions and cluster mergers.
- **Collisionless shocks are studied numerically with particle** in cell (PIC) simulations, and experimentally with electron-positron plasmas and ionized gases produced with laser pulses.
- Currently, numerical simulations of nonrelativistic pair-plasmas have not yet been performed.

イロメ イ母メ イヨメ イヨメーヨ

Contents

[Motivations](#page-1-0)

- 2 [DM as pair plasma](#page-13-0)
- 3 [The minimal model of dark plasma](#page-18-0)
- 4 [Beyond the minimal dark plasma model](#page-25-0)
- 5 [Conclusions and outlook](#page-28-0)

イロメ イ母メ イヨメ イヨメー

 \equiv

Dark plasma

- The goal is to explain the observed collisional behaviour of DM with energy dissipation caused by collisionless shocks
	- The plasma instability growth can be estimated in a linear regime: analytic estimates possible
	- The saturation phase (and energy dissipation) is non-linear: numerical simulations needed
- \blacksquare From observations of the bullet cluster, the fraction of collisional DM can be no more than 30%.
- \blacksquare In our minimal model we assume that 70% of DM is a generic WIMP, and 30% consists of dark plasma.

イロト イ押 トイヨ トイヨ トーヨー

The minimal model of dark pair plasma

■ The minimal model for dark plasma is one Dirac fermion charged under an unbroken $U(1)$ gauge group:

$$
\mathcal{L} = \frac{1}{4} F_{D\mu\nu} F^{\mu\nu}_D + \bar{\chi} \left(i \vec{D} - m_D \right) \chi.
$$

- We neglect the kinetic mixing term $F_{D\mu\nu}F^{\mu\nu}$ as it is highly constrained.
- The dark matter abundance is produced as a thermal relic by the annihilation into dark photons, $\bar{\chi}\chi \rightarrow \gamma_D \gamma_D$.

KORK ERKER ADAM DI SAGA

Numerical results

30% of correct relic abundance is obtained for $\alpha_D \approx 4.5 \times 10^{-5} \frac{m_D}{\text{GeV}}.$ For $R = 200$ kpc and $M = 4 \cdot 10^{13} M_{\odot}$ halo we obtain: $\lambda_D \approx \, 45.8 \, \, {\sf km} \, \, \sqrt{\frac{m_D}{\sf GeV}}, \, \Lambda \approx 5.5 \cdot 10^{18} \, \sqrt{\frac{m_D}{\sf GeV}} \gg 1,$ $\lambda_{\sf mfp} = \lambda_D \, \frac{\Lambda}{\operatorname{\log} \Lambda} \approx 189$ kpc $\left(\frac{m_D}{\text{GeV}} \right)$. \blacksquare The plasma instability formation time can be estimated:

$$
\tau_s \approx 10^3 \omega_p^{-1} \approx 85.3 \text{ s } \sqrt{\frac{m_D}{\text{GeV}}}.
$$

- The shock waves most certainly form!
- **n** Characteristic bremsstrahlung time $t_{\text{brems}} \approx 4.7 \cdot 10^{19}$ yr, where the dependence on the DM m[as](#page-20-0)s [c](#page-22-0)[a](#page-20-0)[n](#page-21-0)[ce](#page-22-0)[l](#page-17-0)[s](#page-18-0) [ou](#page-25-0)[t](#page-17-0)

Observational Constraints: BBN

- BBN bound on effective number of neutrino species $N_{\rm eff} = 3.04 + 2 \left(\frac{T_D}{T_{\rm c}} \right)$ τ_γ $\big)^4 = 3.15 \pm 0.23$ constrains the temperature of the dark photons during BBN.
- \blacksquare The dark photon temperature is given as

$$
\mathcal{T}_D = \mathcal{T}_{\gamma} \left(\frac{g_{*s,\gamma}(\mathcal{T}_{\gamma})g_{*s,D}(\mathcal{T}_*)}{g_{*s,D}(\mathcal{T}_D)g_{*s,\gamma}(\mathcal{T}_*)} \right)^{1/3},
$$

where the two sectors are assumed to be in thermal equilibrium at T_* .

 \blacksquare This constrains the number of fermions in the dark sector: $N_D < 2.35$. $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 QQ

Observational Constraints: CMB

■ The rate of structure formation is suppressed until the kinetic decoupling of the dark matter and dark radiation, which occurs at

$$
\mathcal{T}_{\rm kin} = \left(\frac{4\pi}{45}g_*\right)^{\frac{1}{4}}\sqrt{\frac{135}{64\pi^3}}\frac{m_D^{\frac{3}{2}}}{\sqrt{m_P}\alpha_D}.
$$

- If $T_{\rm kin} > 640$ eV, only multipoles above $l > 2500$ are affected in the CMB, and thus temperatures above this limit are unconstrained by Planck.
- For $T_{kin} \approx 500$ eV the small scale structure is suppressed for structures below the size of $\sim 10^9 M_{\odot}$, alleviating the missing satellites problem. $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{B} \times \mathbf{A} \times \mathbf{B} \times \mathbf{A} \times \mathbf{B} \times \mathbf{A}$

Results: lower bound on DM mass

MARTTI RAIDAL Evidence for Dark Matter Self-Interactions via Collisionless Shock

Contents

[Motivations](#page-1-0)

- [DM as pair plasma](#page-13-0)
- **3** [The minimal model of dark plasma](#page-18-0)
- 4 [Beyond the minimal dark plasma model](#page-25-0)
- 5 [Conclusions and outlook](#page-28-0)

イロメ イ母メ イヨメ イヨメー

 \equiv

Symmetric atomic DM

Can one do better and explain all DM properties with such a model?

- Extend the model with more flavours: χ_1, χ_2 with (approximately) equal masses
- Bound states $\bar{\chi}_1 \chi_2$ can form most of the DM: the symmetric dark atoms that are thermally produced
- **E** Subdominant fraction remains ionized or is re-ionized in cluster mergers
- Sommerfeld enhancement is needed to boost the recombination into symmetric atoms after DM freeze-out
- Work in progress ...

イロメ イ母メ イヨメ イヨメーヨー

Interesting predictions of this scenario: to do list

Dark plasma heats up and does not radiate effectively: in the centres of halos there must be isothermal dark plasma cores. A solution to the core vs cusp problem?

■ N-body simulations with baryons and dark cores needed

- Dark collisionless shocks are a generic property of structure formation. There should be dark Fermi mechanism for dark cosmic ray acceleration with E^2
	- Dark CR feedback for structure formation?
	- \blacksquare Has IceCube detected very high-energy dark cosmic rays instead of neutrinos?

イロメ イ母メ イヨメ イヨメーヨ

 Ω

Contents

[Motivations](#page-1-0)

- [DM as pair plasma](#page-13-0)
- **3** [The minimal model of dark plasma](#page-18-0)
- 4 [Beyond the minimal dark plasma model](#page-25-0)
- 5 [Conclusions and outlook](#page-28-0)

イロメ イ母メ イヨメ イヨメー

 \equiv

 Ω

Conclusions

- Cluster mergers hint that self-interacting DM collective effects may dominate over $2 \rightarrow 2$ scatterings
- Collisionless shocks in dark pair plasma may explain the observations
- We show that such shocks form quickly, and they may solve the small-scale structure problems
- **Such a DM is thermal relic**
- Interesting implications for halo profiles and dark cosmic rays

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Outlook

- **More observations required to form a coherent picture of** DM dynamics in cluster mergers.
- Detailed simulations of non-relativistic dark plasma needed to understand its effects on galactic and cluster halos, structure formation etc.
- **Further model building required for explaining naturally** the partially interacting dark matter scenario, e.g. partially ionized dark atoms...

イロト イ押 トイヨ トイヨ トーヨ