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Light dark matter in LUX

The LUX hand soap in the
restrooms here is infused
with moisturizing liquid
xenon, that cools your
hands as it cleans them.
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Light dark matter in LUX

But this isn’t a talk about soap

A. Manalaysay, May 30, 2015



Light dark matter in LUX

LLUX Detector

e LUX is a dual-phase time projection
chamber (like most other liquid-noble
DM experiments); essentially a
cylinder of LXe.

 Primary scintillation light (“S1”) is
emitted from the interaction vertex,
and recorded by an array of PMTs on
top and bottom.

e Electrons emitted from the interaction
are drifted by and applied field to the
surface and into the gas, where they
emit proportional scintillation light
(“S2”), also recorded by the PMTs.

* This design permits:

» Identification of multiple scatters
(via S2 count).

» 3-D localization of each vertex.

» ER/NR discrimination (via S2/S1)

» Sensitivity to single electrons.

A. Manalaysay, May 30, 2015
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Light dark matter in LUX

Sanford Underground Research Facility

Same cavern where
solar neutrinos were
first discovered.
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LUX, located on the 4850 level |
(~1.5 km underground) in Lead, ‘ Myp Cam.,_% |

South Dakota. ~107 reduction in
cosmic muon rate.
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The detectorand \
cryostat live inside a

~300 tonne ultra-pure \\
active water shield. /\
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® 47cm diameter by 48 cm
height dodecagonal
“cylinder”.

e 370 kg LXe total, 250 kg
active region

* 61 PMTs on top, 61 on |
bottom, specially produced ¥
for low radiogenic BGs and
VUV sensitivity.

e Xenon was pre-purified via
chromatographic
separation, reducing
residual krypton levels to

3.5%1 ppt (g/g).

e Liquid is continuously
recirculated (' tonne per
day) to maintain chemical
purity.

o Ultra-low BG titanium
cryostat.
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Light dark matter

LUX on the horizon

There are several upcoming LUX [DM] papers in
the pipeline:

¢ Vanilla re-analysis (i.e. S1+52) of the already
released data.

¢ J[onization-only search for low-mass WIMPs.

e Axion (solar) and axion-like particles.

A. Manalaysay, May 30, 2015



Light dark matter in LUX

LUX 1onization sensitivity
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Light dark matter in LUX

LUX 1onization sensitivity
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Light dark matter in LUX

Light dark matter

e Light O(1 GeV) vanilla WIMPs or asymmetric DM*
» ~keV axion-like particles®

e subGeV hidden-sector U(1) models*?

* Gives up on scintillation signal

T Looks for electronic recoils

A. Manalaysay, May 30, 2015

11



Light dark matter in LUX

Light WIMP search

Assumed cutoff

e The published LUX : for LUX first results
results assumed LXe’s Double Scatter (S1, 2xS2s > 33 phe) ? From J. Verbus, APS2015
response has a hard B A
CUtOff leOW 3 keV Sys. uncertainty due to ]Eos. rec. energy bias correction

(conservative choice due
to ignorance).

[,
O»—A
T

e We have since measured

LXe’s ionization response
down to ~0.75 ke V!

e How much of a
difference this make vis-
a-vis light-WIMP
sensitivity?

'Sys. uncertainty (flat) E LUX
* ‘ :  Preliminary

Sys. uncertainty (£1lo)

Ionization Yield [electrons / keV,,(

Reconstructed lonization Yield with
Assoctiated Statistical Uncertainty

0 ‘ ‘ o | |

0 10° | SkeV‘ - 10"

Energy Measured from Scattering Angle [keV,,,]

A. Manalaysay, May 30, 2015
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Light dark matter in LUX

Light WIMP search

e The published LUX
results assumed LXe’s
response has a hard
cutoff below 3 keV
(conservative choice due
to ignorance).

e We have since measured

LXe’s ionization response
down to ~0.75 ke V!

e How much of a

difference this make vis-
a-vis light-WIMP
sensitivity?

A. Manalaysay, May 30, 2015

Assumed cutoff

A d cutoff
for XENON10 S2-only el

for LUX first results

B EERIENE RN

Double Scatter (S1, 2xS2s = 33 phe)

From J. Verbus, APS2015
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Light WIMP search
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Light WIMP search
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Light dark matter in LUX

Light WIMP search
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Decreasing this response cutoff from 3keV to 0.75keV

provides access to a factor of 8000* more signal at M = 6 GeV

A. Manalaysay, May 30, 2015 *Before folding in detection efficiencies
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Light dark matter in LUX

keV axion-like particles

e XENON100 has searched
their data for evidence of

axio-electric conversion of
DM candidates in the O(1-10)
keV mass range.

e Easy to search for: looking
for a monoenergetic line
given by MpM — Eb

See talks by:
e Ranny Budnik
e Rafael Lang

A. Manalaysay, May 30, 2015
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Light dark matter in LUX

keV axion-like particles

Existing DM WIMP
search:

¢ 160 events between
~1 keV and ~5 keV
(electronic-recoil

energy)

* 118 kg fiducial mass,
85.3 days

e [ ower background
than XENON100: can
expect improved
sensitivity.

A. Manalaysay, May 30, 2015

log , 0(82b/S1 ) X,y,z corrected
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Light dark matter in LUX

Detection of light DM

e Hidden sector with its own
U(1) gauge symmetry.
e The hidden gauge boson, A’,

kinetically mixes with our
photon.

e The DM interacts with SM
particles in this way.

e DM masses in the range
O(1-1000 MeV)

e Kinematics precludes looking
for this as nuclear recoils: we
look instead for electronic
recoils.

A. Manalaysay, May 30, 2015

{ Hidden
\ Sector

17



Light dark matter in LUX

Hidden sector on electrons

Expect electronic
recoils in the eV
to keV range.

A. Manalaysay, May 30, 2015

Electron Ionization Spectrum, &, = 107>’ cm?

'_IFT 4 R. Essig, J. Mardon, T. Volansky, PRD 85 (2012), 076007, arXiv:1108.5383
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Possible sensitivity

Sensitivity here based
on:
*] kg detector
*] year exposure
eSingle-e- threshold
* No background

o, [cm?]

A. Manalaysay, May 30, 2015
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XENONTIO0

100~
90% C.L. Upper Limits &
(cts/kg/day) Z

3 10}

Single e <23.4 T
Double e <4.23 ;
Triple e < 0.90 =
=
=
S
(no BG subtraction) O

0.1

A. Manalaysay, May 30, 2015

R. Essig, AM, J. Mardon, P. Sorensen, T. Volansky PRL 109 (2012), 021301, arXiV:1206.2644
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Light dark matter in LUX

XENONTIO0

®* Here for ma = 10 MeV,
F(g)=1

¢12.5 live-day data set,
1.2 kg, no BG o
subtraction, can already 2
probe un-touched
parameter space.

1037 ;
10—38

10—39 -

Excluded by _
XENON10 data :

Hidden— = _
Photon models 3

10 100 103
Dark Matter Mass [MeV ]

PRL 109, 021301 (2012)

week ending

PHYSICAL REVIEW LETTERS 13 JULY 2012

A. Manalaysay, May 30, 2015

S

First Direct Detection Limits on Sub-GeV Dark Matter from XENON10

Rouven Essig,'** Aaron Manalaysay,”" Jeremy Mardon,** Peter Sorensen,”* and Tomer Volansky

6.l

'C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA 21

S N e T e A e N o AT L EN R T VA



Light dark matter in LUX

XENONTIO0

®* Here for ma = 10 MeV,
F(g)=1

¢12.5 live-day data set,
1.2 kg, no BG o
subtraction, can already 2
probe un-touched
parameter space.

“Proof of principle”

Excluded by _
XENON10 data E

Hidden— _
Photon models 3

10 100 103
Dark Matter Mass [MeV ]

PRL 109, 021301 (2012)

week ending

PHYSICAL REVIEW LETTERS 13 JULY 2012

A. Manalaysay, May 30, 2015

S

First Direct Detection Limits on Sub-GeV Dark Matter from XENON10

Rouven Essig,l’z’>X< Aaron Manalaysay,>" Jeremy Mardon,** Peter Sorensen,”* and Tomer Volansky

6.l

'C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA 21
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A. Manalaysay, May 30, 2015

[s it really that easy?

22



Light dark matter in LUX

Timeline

[f it’s so easy, then why have we seen no
results yet from XENON100 or LUX?

XENON100 first results Today
N m& "&{b w@b& m& m@b
: Ly | - | ] | | } :
XENON10 ;
hidden-sector LUX first results
limits

A. Manalaysay, May 30, 2015
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Light dark matter in LUX

Challenges

Why is this type of search challenging?

Two problems:

1. Detector details:
* Detector “features” lead to difficulties in interpreting

ionization-only searches.

2. Backgrounds:
e In normal mode (ionization and scintillation), BG can

be rejected either by particle ID, or vertex position.
This is not possible with ionization-only.

A. Manalaysay, May 30, 2015
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Light dark matter in LUX

Problem

1

Large detectors are harder to

build than small de

Experiment

XENON10

XENON100

LUX

*For events on the bottom

A. Manalaysay, May 30, 2015

ectors

Charge loss to impurities®

~40%

~30%

+HV
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E extrl
Q)
O2
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e-1e-
e o
e o
e- O2
Eq
02 02

00Co00aoo00
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Light dark matter in LUX

Problem 1

Large detectors are harder to
build than small detectors

Experiment

Charge loss to impurities®

XENON10

XENON100 ~40%

~30%

LUX

The amount of charge loss depends on the
depth of the event. Without a scintillation
signal, we cannot reconstruct the depth.

A. Manalaysay, May 30, 2015
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02 02
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Light dark matter in LUX

Problem 1

Large detectors are harder to
build than small detectors

Liquid-gas electron
extraction efficiency

Experiment

XENON10

XENON100 ~100%

~50%

LUX

A. Manalaysay, May 30, 2015

+HV
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0000000000,
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Problem 2: single electrons

R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, PRL 109 (2012), 021301, arXiv:1206.2644

B keround-free” 100F7 REPSEEEEE -:
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E - pPIpe dream éj ' ‘I TS Raw spectrum
S R I
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@ Uy N :
O By N :
S 4 single ) \\}!'i I ih‘ ! N :
- _ electron \ I.’S Lim Ml mE
it | i
% L ~ double .-_- | ST Tl T
b= 15 vy electron |4 N I II\I II I
g i ] !‘=\ K . ;
triple o
0'1 2 L | L L L L | | | L L | L euleuc?I/‘OInu L L L | L \u\__

05 1 15 2 75 o e
Ionization Signal [electrons]

A. Manalaysay, May 30, 2015
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Problem 2: single electrons

“Background-free” All dual-phase LXe DM experiments have
observed single-e- backgrounds that are

15 a p1p€ dream difficult to model. LUX is no different

B. Edwards et al. Astropart. Phys. 30 (2008) 54

1001 | 40 Number of Scintillation Photons
B 1535 0 250 500 750 1000 1250 1500 1750 2000
: : 85IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
_ i 7 E
sol 1 o « o ZEPLIN-II
_ i O F
L 1 _25 "é 5 E_
= - - c 4F
5 op 20 Sk
o« - — O -
> i i o . E
i 1415 wm 2E
L _ 1 ;_
_50__ __ 10 O E 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
_ i 0 10 20 30 40 50
- sl B Energy, keV
_1OO_I A B R B B 0 Fig. 6. Fraction of primary triggers where a single electron is observed as a function
-100 -50 0 50 100 of primary signal size (normalized to y-ray energy), calculated as the fraction of]
X. mm ZEPLIN-III timelines checked containing single electron signals.
9

E. Santos et al. JHEP12 (2011) 115
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Light dark matter in LUX

Problem 2: single electrons

“Background-free”
is a pipe dream

All dual-phase LXe DM experiments have
observed single-e- backgrounds that are
difficult to model. LUX is no different

XENON100

Rate of small S2 signals [event ]
N W AN Ol (@) ~ (00)

=

| | | |

08 1 Ak .
Concentration of impurities 02 eq. [ppb]
E. Aprile et al. J. Phys. G 41 (2014) 035201

A. Manalaysay, May 30, 2015

A IR SR B R
2 kds o6 .18

counts / 0.5 phe

P. Sorensen, Ph.D. Dissertation (2008), Brown University

-

ﬁ w ) i

—WS2 2.52 live days
—(1e-)u=271 0=6.3[]
——(2e-)u=54.2 0=8.9|]
Triggers '

XENON10 -

10 20 30 40 50 60 70 80 90 100 110 120

S2 [phe]
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Problem 2: single electrons

e Because LUX’s acquisition Nolisy” Region From S. Uvarov, APS2014
system is triggerless (i.e. we
record everything), we can

=
=]
[X]

LUX

Preliminary

monitor these events as well.

e Following a large event, we see
elevated pulse activity, which
decays through several
different time constants.

-k
=

pulse rate (Hz)

1500 2000 2500 3000 $500

acquisition time (ms)

0 500

1000

“Quiet” Region

A. Manalaysay, May 30, 2015 31
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Problem 2: single electrons

These observations teach us that multiple mechanisms
contribute to single-electron background signals.

e-
* The electrons see a potential barrier at Cie - : -
the surface and can get trapped there,
to later “evaporate” off. LXe

A. Manalaysay, May 30, 2015
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Problem 2: single electrons

These observations teach us that multiple mechanisms
contribute to single-electron background signals.

e-
* The electrons see a potential barrier at Cie - : -
the surface and can get trapped there,
to later “evaporate” off. LXe
e O, impurities that have captured an \%‘
electron can be ionizedbyaXe = /7™ . v

scintillation photon. e
...... > OZ

A. Manalaysay, May 30, 2015 32



Light dark matter in LUX

Problem 2: single electrons

These observations teach us that multiple mechanisms
contribute to single-electron background signals.

e-
* The electrons see a potential barrier at Cie - : -
the surface and can get trapped there,
to later “evaporate” off. LXe
e O, impurities that have captured an \%‘
electron can be ionizedbyaXe = /7™ . v

scintillation photon. e
...... > OZ

e A Xe scintillation photon (7 eV) can

eject an electron from the surface of a o
metal (i.e. one of the electrodes). "W/~ -

A. Manalaysay, May 30, 2015
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Problem 2: surface backgrounds

e 2351 is a naturally occurring radioisotope,
found in every material in nature.

e [ts complicated decay chain takes it through
222Rn, which is a noble gas, and can therefore
diffuse into the air and get everywhere. It will
then “plate out” once it decays.

* The penultimate daughter, 21°Po, is

problematic: low energy, heavy projectile,

j gives small ionization and scintillation signals
@A (for which we don’t yet have measurements).

1.5sec

218

214 ornium ?1OPO
a B 6431. 138day
AN
2 s 210 Bismuth
B' 214 \ 210
B 20'“ (9 (9

214 210 206
@&l S8l 8-
268mm o 23 4°'° v 2 i 0,4
fos S <
oo s 11|
a =\ 42min

O
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Problem 2: wrap up

® We are currently unable to model
these processes, and hence unable to
form a background model. No

background model -> limits only GXe

e Several LUX/LZ groups are building
dedicated setups to study these
processes thoroughly™.

[LXe

X
S <

*An empirical model can be made in some,

but not all situations.
A. Manalaysay, May 30, 2015
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Problem 2: wrap up

® We are currently unable to model
these processes, and hence unable to
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Light dark matter in LUX

summary

e LUX re-analysis coming out soon. Currently collecting
data for the 300-day run.

e Several DM papers in the pipeline (not just vanilla
WIMP).

e [onization-only searches are good at targeting light
DM candidates, but are fraught with backgrounds we
don’t yet understand.

e Several LUX/LZ groups currently working to better
understand these details.

Stay tuned!
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LUX-ZEPLIN (LZ)

Next generation, the LUX-ZEPLIN (LZ) experiment, recently

selected as one of three “G2” DM projects! Projected for 2016-2020,

100-fold sensitivity improvement over LUX.

©066 J &) DOE, NSF to fund LUX-ZEP.. &

www.sanfordlab.org/news /press_release/doe-nsf-fund-lux-zeplin-lz-experiment-sanford-lab & Q B 3

— —

! . §—"Sanford Underground Research Faci —

’J'r?-m \..."\ . a gg?-‘. -
\ .“ § . .n‘.,\

HOME ABOUT US NEWS SDSTA LBNL OFFICE BUSINESS SERVICES CAREERS CONTACT US

Science Environment Health and Safety Education and Outreach

DOE, NSF to fund LUX-ZEPLIN (LZ) experiment at c oy B
Sanford Lab Search

Press Contact: For Release: July 14, 2014

Constance Welter The Department of Energy and National Science Foundation selected

Communications Director LUX-ZEPLIN or “LZ" as one of three experiments that will be funded in the Subscribe to D
Office Phone: 605.722.4025 _ pe . ubscribe to Deep
Coll Phone: 605.641.0407 next-generation dark matter search. LZ will be deployed at the Sanford Lab in Thoughts

Contact person by email Lead, SD.

Receive our weekly newsletter,
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LUX-ZEPLIN (LZ) 7

® Successor to LUX N d
e Active LXe mass of 7 tonnes,
fiducial mass of 5.6 tonnes.
e Construction slated to begin
in 2016.

e To be placed in the LUX
water shield.

e [ Xe, inside 4t liquid
scintillator veto, inside water

shield. '>

.\\
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The WIMP Landscape — past and future
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