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Goal

Determine universal, distinguishing characteristics of F-theory models,
with distinct phenomenological signatures.

F-theory model building based on lots of examples: local and by now also
global, with semi-realistic properties.

Challenge:
Combined package of realistic spectra, flavor, susy breaking, moduli
stabilization, etc all into one framework, and genericity of such features.

Strategy:
Ask questions of universal nature: find characteristics that can be
comprehensively understood and constrain the phenomenology



Setup

Constraining F-theory GUTs using additional
symmetries: U(1)s and discrete.

1. Symmetries:
What continuous and discrete symmetries are both geometrically
consistent within F-theory and phenomenologically sound?

2. Anomalies:
Spectra consistent with hypercharge flux (GUT breaking) induced
anomalies

3. Flavor:
Realistic quark sector Yukawa textures from distribution of matter,
and using Froggatt-Nielsen type mechanism



Summary

[Lawrie, SSN, Wong]

= , superset of charges for GUTs
= All charged matter and GUT-Singlet

= Classification of possible Higgsings for U(1)s to

2. Phenomenological Implications:

Combined system of , phenomenological
consistency and anomaly cancellation has solutions with realistic flavor
texture

[Krippendorf, SSN, Wong]



GUTs with extra U(1)s

e Toric Constructions with extra U(1)s.
[Morrison, Park][Braun, Grimm, Keitel][Mayrhofer, Palti, Weigand][Cvetic, Klever,

Piragua], [Morrison, Taylor]...
e All toric hypersurfaces: [Klever, Pena, Piragua, Oehlmann, Reuter]

e Multiple 10 matter loci:
[Mayrhofer, Palti, Weigand], [Kuentzler, SSN], [Lawrie, Sacco],[Braun, Grimm, Keitel]

e Preliminary Pheno: [Krippendorf, Pena, Oehlmann, Ruehle]

e Systematic approach: Tate-like forms, however limited by ability to
factor polynomials of UFD... [Kuentzler, SSN][Lawrie, Sacco]

Goal: Find general way to constrain U(1)s from first principles
[Lawrie, SSN, Wong]



Plan

I. Non-Abelian Gauge Groups in F-theory
II. Systematics of U(1)s in F-theory

ITII. Phenomenology: Anomalies, PD, Flavor



I. Non-Abelian Gauge Groups in F-theory



F-theory and Elliptic Fibrations

4d vacua: Elliptically fibered Calabi-Yau, 7 = Cy + ie~? axio-dilaton of IIB:
L)

Ty

T3

b

= K. fibers = Tori C/Z & 7Z with marked point O (elliptic curve, with
O = origin) with complex structure T

= Exists “zero section” 0g: B—E, :b+— O

= For such there is always a Weierstrass form with O = [0,1,1]

Y’ = x° + faxw* + gu® [w, x,y] € P(1,2,3)



4d gauge bosons from F-theory

Reduce M-theory 3-form along in fiber:

Cs N A

= abelian gauge potentials A. Two types
1. w from special fibers (ADE like singularities) = GUT gauge bosons

2. w from rational sections = U(1)s [Morrison, Vafa]

Mathematically: maps from base to fiber: 0 : B — E.: b — P with
P a rational solution to y* = x° + fxw* + gw®, P # O

T3

1%
e




(1,1) Forms and Singular Fibers

[Kodaira]: d “Singular fibers”, which are Pls intersecting in affine ADE
Dynkin diagram =

e Kodaira fibers from resolutions of singular fibrations
e Elliptic curve is y* = x> 4+ fxw* + gw® singular if
A=4f+27¢°=0
Here A depends on base:
Az)=0(Z") < z=0issurface SC B

e Physics:

Syncs with 7-branes intuition in IIB, which sources Fy
and 7 ~ log(x — xp) undergoes monodromy SL,Z



Gauge theory from Singular Fibers

© :SU@
° /)pheres

Geometrization Resolution
:>

—

e Resolution of singularities:
Trees of Pls, intersecting in Affine SU(5) Dynkin diagram

P! = S% = curves in resolved fiber < simple roots of gauge group SU(5)

e M/F-theory:
Gauge bosons from C; = A; A w!"

i

and wrapped M2



Matter

e Matter is localized along codimension 2 loci >: Singularity worsens

A= Psz7 + O(z°)

e Matter determined by fiber type along codim 2:
Z:P5:01 SU(6)—>SU(5)XU(1) 35%240@10@56@3—6



Geometry:

P! associated to root « splits into “weights” of 5

Pl — C_|_ ‘|‘ C_

«

M /FE-theory picture:

Wrapped M2-branes give matter transforming in representation of SU(5)

= Classification of posssible codim 2 fibers?



Coulomb phases and Resolutions

M-theory on resolved Y3/, = Coulomb branch of 3/5d, N = 2 theory
e Vector multiplet for gauge group G: V = (¢, A)
e (¢) € CSA(G) = G — U(1)rnkO)

= Coulomb branch = R™K®) /W = Weyl chamber

Including matter:
N chiral multiplets Q in representation R of G introduces substructure in
Weyl chamber.

[deBoer, Hori, Oz][Aharony, Hanany, Intriligator, Seiberg, Strassler]

[Diaconescu, Gukov][Grimm, Hayashi]



Coulomb Phases with Matter

Substructure in Weyl chamber:

Q in rep R with weight A
L5 [, A)*1QF

= new walls (Where additional massless states arise)



e Lie algebra g, and positive roots ®+.

e Weyl chamber:
C*={¢pebh, (¢,a)>0, forall acd"} Ch=CSA

e Representation R with weights A;, I =1,---r = dimR, with

~

g — gdu(l)
Adj(g) — Adj(g) ® Adj(u(1)) R B R_,

= Phases for R are subwedges with definite sign of (¢, \):

cDel---e,, = <¢EC*I sign({qﬁ,)q}):q:il, 121, ,7’>Z+

Phases are 1:1 with elements of

=

1:1
{P,..., } —

=



Main example:
g = su(5), R =>5or 10.

Simple roots
a; = L; — Lip
Fundamental weights:
5: {Li,---,Ls}
Anti-symmetric representation:

10: {Li+Lj,i<j}

su(d)

I AVAVAVEA

LiJLo|JLs|L4g|Ls

L,-L; Ly-L, L,-Ls

I AVAVA

I-'12 L13 L14 L15

Li-L,
L23 I-‘24 I-‘25

L,-Ls

L,L,

&
.
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Box Graphs

Then a phase defines a sign/coloring to each weight:

D, ...c, = +/coloring (blue or ) of representation graph = Box graph
®,,  =(Li,Ly,—L3,—L4,—Ls)z+ is realized in terms of:

L,-L, Lo-Ly LyLs

AVAVAVEA

More importantly: Conversely a sign decoration of a rep graph defines

phase if it satisfies flow rules:

K3
5:

—




Codim 2 Fibers/Phases: su(5) & u(l) — su(6)




Classification of Singular Fibers

e Codim 1: Classic Algebraic Geometry [Kodaira|[[Néron]: Lie algebra g

Singular Fiber Codim 1

—

e Codim 2: R=representation of g

Singular Fiber Codim 2

—

(Decorated) affine Dynkin diagram of g

[Hayashi, Lawrie, Morrison, SSN]

Box Graph = Decorated rep graph of R

Tool: Coulomb phases of 3d N = 2 susy gauge theories.

Fy=C,+C. F, = C,+C.

Fz - C++C_

F3 F2
C.C,
F4 F2 F4 F1
| — | — — C+ C
0 Fl
_____HN [TTTT]
F3= C+ + C_ FO = C++C_

NB: known also now for other matter and higher rank




II. Abelian Gauge Groups in F-theory



Mordell-Weil group and U(1)s

LI(1)s arise from additional (1, 1)-forms in fibration
C3=AAwhY

(1,1)-forms in elliptic fibration:

e Kodaira singular fiber (= GUT gauge bosons)

. (“rational solutions to the elliptic curve
equation” or “marked points”)

LI(1)s < rational sections

T3

%)
e —




Math fun facts:
e Elliptic curves have group laws: can add points on curves pHg

e The rational points on an elliptic curve form a free abelian group
Mordell-Weil group = Z" & T
e Rational points:
y* = x° + fxw* + gu® op: w=0,x=y=1

= Recall: Weierstrass generically has only one marked point “origin”

op: w=0,y=0

bz — P ’J)
y (v +bx") =wP(x,y,w) {01: w=0, y = —b

= 0y is the origin and o; generates Mordell-Weil=Z



Elliptic fibrations with rational sections

2

Codim 1: SU(5) singular fiber with oy and o7 intersecting one of the P's:

e

e P! — CT + C~ with C* weights of matter representation.

Codim 2:

e U(1) charge: o intersected with C*

e Question: what can oy and o7 do in codim 2?
= Universal characterization of U(1)s in F-theory



Strategy

Fibers in codim 2 (Box graphs)

[Lawrie, SSN, Wong]

Constraining all possible U(1) charges

General properties of sections




Constraining rational sections in codim 2: CY3 and CY4
[Lawrie, SSN, Wong]

e Compatibility codim 1 and codim 2: o - F =1 etc.

e New effect: sections can contain P!s of fiber = “wrapping”

1. Constraints on normal bundle of rational curves C: If C C o C Y,
and o and Y smooth, with ¢ divisor:

0 — N¢jo — Nejy — Nyjyle =0
2. Connecting normal bundle to charge:
oy C=—-2—degNc/,

3. Know N % from codim 2 fibers/box graphs
= determine all possible embeddings of N¢/,

Key assumption: o is smooth.



Determining intersections and charges

Y= smooth Calabi-Yau three-fold (similar analysis for CY four-fold in
paper), o C Y a non-singular divisor, C C o a rational curve.

(i) Let (C); = deg(N¢,,) = k. If k > —1 the short exact sequence of
normal bundles splits and

Ncy = O(k) © O(=2 — k).
(ii) Let Nc/y = O(—1) & O(—1). If o smooth, C C o, then
Nep=00),  k<—1
and there exists a non-trivial embedding
O(k) — Ncyy = O0(=1)® O(-1)

and
ocyC=-2—-k>-1



(iii) Let . If 0 smooth, C C o, then
Nejo = OK),
and there exists a non-trivial embedding
O(k) — N¢yy =0@ 0(-2)

and



Codim 2 Fibers: SU(5) — SU(6)

Example: F; — C" + C . Then from box graph analysis C* are (—1, —1)
curves:

In particular ¢ = smooth rational section, C* C o

= NC+/U — O(k), k S —1

= oyCr=-2—-k>-1



Codim 2 Fibers: SU(5) — SU(6)

| EEEE
Fl = C++C_
8 01.C+:+1
Gl.C, = 0
01.C+: 0
0.C,=-1 0.C,=-1 6;.C.=+1
0.C.=+1 0.C.=+1
01.C+: '1 Gl.C+= '1
C =+2 C.=+2
6.C,=+1 6.C,=+1 o o
c.C=-1 c.C=-1
6,.C.=+2 6,.C,=+2
Gl.C_ = '1 G].C_ = -l




U(1) charges

The U(1) charge obtained from intersecting with (Shioda)
5250'1 —50’0—|—Sf,

S ensures that roots of SU(5) remain uncharged under U(1).




Complete set of charges

CY three- AND four-fold charges with smooth rational sections are
constrained to be as follows:

1) 70 ;oI
109, 1O O,

1OV (-3, -2 -1,0,41,42,43}

5U(1) charges: IOV {—14,-9,—4, +1,+6,+11}
1O {-13,-8,-3,42,47,+12} .

Similar analysis for I; yields all possible charges for 10 matter.
10V {F3,F2,F1,0,41,42,43}

10 U(1) charges: IO": {713, 78, 73,42, +7,+12}

19 {711, 76,71, +4, 19} .



U(1) charges ot GUT-singlets

Similar analysis for U(1)-charged GUT singlets: key to break to discrete
symmetries [ C U(1).

Realizes all the KK-charges oy - C for these singlets as well = all elements
of Tate-Shafarevich, see also [Mayrhofer, Palti, Till, Weigand], [Cvetic, Donagi,
Klever, Piragua, Poretschkin] for charge 2 and 3.

For singlets for CY3: exists criterion for contractibility of rational curves
[Reid, Laufer] Ny has degree (0, —2),(1,1),(—3,1) (For CY4, we
determine all possibilities, but don’t impose contractability)

[Lawrie, SSN, Wong]

(1 € {0,41,42,+3,+4, 45,46}

LI(1) charges of GUT singletsin  { IV € {0, 45, 410, +15, £20, 25}

/"

1M € {0,+5,+10,+15,+20, +25} .



Multiple U(1)s

5 matter charge: (-4,-7)



ITI. Phenomenology



1. Uses of Symmetries
: U(1)s and 4d spectra from F-theory.
e Suppress unwanted couplings: Proton decay

e Forbid tree-level p-term

e Flavor: U(1)s for Froggatt-Nielsen



Rapid Proton Decay

Protect model from Proton Decay: half-life > 10 years.
e Dim 4: B/L-violating operators (R-parity violating)

Wim 4 = A5i5/10s D AV LiL e, + AL, diL;Qq + X,

ija ija ija

did i,

e < Msusy ) 512
— \ TeV

e Dim 5:
Wims ___‘5

abci

Elel Q(Z Qb QCL —|_ 5abczuﬂlube(§d —I_ 5{1[95'1 Qaubec

10,10,10,5;

2

M .
5L, < 1672 ( 5”5Y> i=1,2
GUT

= U(1)s or discrete symmetries I' to control spectrum



(C1)

(C2.)

(C3.)

(C4.)

(C5.)

(C6.)

(C7.)

p-term:
158,51,
Dimension five proton decay:
0 10,10,10.5;,  a,b,c,i = matter

Bilinear lepton number violating superpotential coupling:
Bi5;5y, D BiLiHy , i = matter,] =1,2,3

Dimension four proton decay:

)\5255]-1051 : i,],a = matter
Tri-linear lepton number violating Kéahler potential couplings:

Kapi10210,5] D kap Qatigll,  a,b,i = matter,A,B,1 =1,2,3
Dimension five lepton violating superpotential coupling:
7i5:51,51, 51, D viLiHsH,H,y i = matter, | = generation index

Dimension five lepton violating Kdhler potential coupling:

/OaSHdSLuloa DpASHd5LuéA, a = matter, A =1,2,3



2. Anomalies

Fy GUT breaking generates chiral spectrum
= In presence of U(1)s: Require G355y, X U(1) and U(1)y x U(1) x U(1)
anomaly cancellation

[Dudas Palti], [Marsano, Saulina, SS-N], [Marsano], [Palti]
= Compatibility constraints between charges and Fy restriction N:

[ (3,2)156: M,
(3,1)_2/3 . Ma — Na
(1, 1)1 . Ma + Na

10, :

I\

: . (B, D15: M;
a (1,2) 10: Mi+ N

\

g = U(1)-charges:

SN+ SN =0 (AL)
35 42 Na+ Y qq/N; =0 (A2)

= Constraints on M, N and U(1) charges.



3. Flavor and Froggatt-Nielsen

Long HiStOI‘y of Flavor in F-theory: [Font, Ibanez, Heckman, Vafa, Dudas, Palti,

Marchesano, Aparicio, Uranga, Regalado, Zoccarato, King, Leontaris, Ross, Hayashi,

Kawano, Tsuchiya, Watari, ....]

U(1)s to generate flavor textures, Froggatt-Nielsen (FIN) type. Tree-level

(S)

Yukawas + subleading terms from U(1)-charged singlets ¢ = ~¢~.
Consistent with SU(5) GUT e.g. [Dreiner, Thormeier]

For local F-theory GUTs:
Why reconsider now?

et ¢ et et e
e 2|, v~ & &2 &
e 1 1 1 1

no realistic FN models from Eg [Dudas, Palti].



New insights from

Idea of this Program:

1. Phenomenological constraints on Symmetries, 2. Anomalies, and 3.
Realistic Flavor combined with imply

F-theory/String theory input:

Constraints on F-theory compactification geometries for GUTs with extra
U(1)s. Use classification of U(1)s in part II.



Search Strategy

e Strict minimal spectrum (no exotics) solving anomaly eqgs (A1l.), (A2.)
e Only F-theoretic U(1) charges
e Absence at leading order of all operators (C1.)-(C7.) at leading order.

e Generating of at least one charge neutral coupling

Y A.10,10,55, D Y43 QuaiigH, , a,b = matter

e Leading order Y} can be absent, but regeneration with singlet vevs
should violate bounds on (C1.)-(C7.)

Y[Z;i . )\ZiloaSiSHd D) YfLIHQAd_IHd + Yf{ILIe‘AHd , i,&l — matter

= Search by #U(1)s, #5 and 10 matter curves.



Viable models

Two classes of solutions to all above requirements:

1. Solutions which also generate via Froggatt-Nielsen mechanism
realistic Yukawa textures
=V

2. Solutions which have charges within known

= v (lots of solutions) but need additional structure like fluxes to
generate additional flavor hierarchies



FN Benchmark Model

e Require 2 U(1)s, 3 10 for good flavor models

e Singlet vevs with charge g: GUT scale mass ratios (e ~ .22)

my.meg.m, ~~ 1264268

my @ Mg .My ~ 1:62: ¢

My :im, :me, ~ 1162264’5 (1)
t

Quark mixing: 61, ~ €, 0O~ R

Yukawa textures that are compatible with SU(5) GUT:

(*) Yy~ | & & 2 DYy~ 2 2 e



GUT Reps || Charges | M N MSSM Matter
104 (10,-7) | 1 0 Qq,1q1,6;,,i=1,2
10, (5,—7) 1 0 | Qo,ilx,¢, j#1i,j=1,2
103 0,-7) 1 0 Q3, 13,03
54, (0,14) 0 -1 H,
5, 0,6) 0 1 H,
5; 0,-9) 0 2 L;,i=1,2
5, 0,1) 3 =2 Ly,d;,i=1,2,3
p-term charge: (0,20). Yukawa charge matrix:
(20,0) (15,0) (10,0) (10,0) (10,0) (10,0)
Qyu ~ | (15,0) (10,0) (5,0) ;o Qya ~ 5,00 (5,00  (5,0)
(10,0) (5,0)  (0,0) 0,0) (0,0) (0,0)

(S)

M = e?: generates successful FN: Yukawas (¥)
GUT

e Singletvev: S =1(_50 = withs =
o All(C1.)-(C7). suppressed, NOT regenerated at same order as Yukawas.

e UI(1); ensures flavor texture, U(1), ensures absence of (C1).-(C7).



Discussion

We determined the most general U(1)" charges for SU(5) models with 5
and 10 matter.

1. Validity: Smooth versus singular sections
Singular divisors also contribute to (1, 1) forms. Normal bundle exact
sequence does not hold. What replaces it, and what are constraints?

2. Global Patching:
What are the global compatibility conditions between the fibers?

4. Physics: [Krippendorf, SSN, Wong]
Combine with 1. Phenomenological constraints on Symmetries,
2. Anomalies and 3. Realistic Flavor from FN
= Successful model: there are only very few similarly successful
models within the class of F-theory charges!
= Construct geometry, fluxes, moduli stabilization.






