F-theory and all Things Rational:

a comprehensive study of U(1)s in F-theory and their Phenomenology

Sakura Schäfer-Nameki

Based on work in collaboration

with Craig Lawrie and Jin-Mann Wong 1504.05593 and with Sven Krippendorf and Jin-Mann Wong to appear

Goal

Determine universal, distinguishing characteristics of F-theory models, with distinct phenomenological signatures.

F-theory model building based on lots of examples: local and by now also global, with semi-realistic properties.

Challenge:

Combined package of realistic spectra, flavor, susy breaking, moduli stabilization, etc all into one framework, and genericity of such features.

Strategy:

Ask questions of universal nature: find characteristics that can be comprehensively understood and constrain the phenomenology

Setup

Constraining 4d N = 1 SUSY *SU*(5) F-theory GUTs using additional symmetries: *U*(1)s and discrete.

1. Symmetries:

What continuous and discrete symmetries are both geometrically consistent within F-theory and phenomenologically sound?

2. Anomalies:

Spectra consistent with hypercharge flux (GUT breaking) induced anomalies

3. Flavor:

Realistic quark sector Yukawa textures from distribution of matter, and using Froggatt-Nielsen type mechanism

String Theory Input: what are possible U(1) symmetries in F-theory?

Summary

1. General characterization of global ways of realizing U(1) symmetriesand possible matter charges in F-theory[Lawrie, SSN, Wong]

 \Rightarrow Model-independent, superset of charges for GUTs

- \Rightarrow All charged matter and GUT-Singlet U(1)-charges
- \Rightarrow Classification of possible Higgsings for U(1)s to discrete symmetries
- 2. Phenomenological Implications:

Combined system of F-theory *U*(1) charges, phenomenological consistency and anomaly cancellation has solutions with realistic flavor texture

[Krippendorf, SSN, Wong]

GUTs with extra U(1)s

• Toric Constructions with extra *U*(1)s.

[Morrison, Park][Braun, Grimm, Keitel][Mayrhofer, Palti, Weigand][Cvetic, Klever, Piragua], [Morrison, Taylor]...

- All toric hypersurfaces: [Klever, Pena, Piragua, Oehlmann, Reuter]
- Multiple 10 matter loci: [Mayrhofer, Palti, Weigand], [Kuentzler, SSN], [Lawrie, Sacco], [Braun, Grimm, Keitel]
- Preliminary Pheno: [Krippendorf, Pena, Oehlmann, Ruehle]
- Systematic approach: Tate-like forms, however limited by ability to factor polynomials of UFD... [Kuentzler, SSN][Lawrie, Sacco]

Goal: Find general way to constrain U(1)s from first principles

[Lawrie, SSN, Wong]

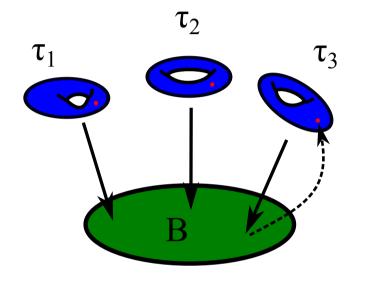
Plan

- I. Non-Abelian Gauge Groups in F-theory
- II. Systematics of U(1)s in F-theory
- III. Phenomenology: Anomalies, PD, Flavor

I. Non-Abelian Gauge Groups in F-theory

F-theory and Elliptic Fibrations

4d vacua: Elliptically fibered Calabi-Yau, $\tau = C_0 + ie^{-\phi}$ axio-dilaton of IIB:



- $\Rightarrow \mathbb{E}_{\tau} \text{ fibers} = \text{Tori } \mathbb{C}/\mathbb{Z} \oplus \tau\mathbb{Z} \text{ with marked point } O \text{ (elliptic curve, with } O = \text{origin} \text{) with complex structure } \tau$
- \Rightarrow Exists "zero section" $\sigma_0: B \to \mathbb{E}_{\tau}: b \mapsto O$
- \Rightarrow For such there is always a Weierstrass form with O = [0, 1, 1]

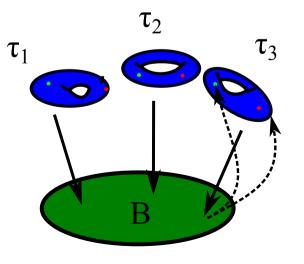
$$y^2 = x^3 + fxw^4 + gw^6$$
 $[w, x, y] \in \mathbb{P}(1, 2, 3)$

4d gauge bosons from F-theory

Reduce M-theory 3-form along (1, 1) forms $\omega^{(1,1)}$ in fiber:

 $C_3 = \omega^{(1,1)} \wedge A$

- \Rightarrow abelian gauge potentials *A*. Two types
 - 1. ω from special fibers (ADE like singularities) \Rightarrow GUT gauge bosons
 - 2. ω from rational sections \Rightarrow U(1)s [Morrison, Vafa] Mathematically: maps from base to fiber: σ : $B \rightarrow \mathbb{E}_{\tau}$: $b \mapsto P$ with P a rational solution to $y^2 = x^3 + fxw^4 + gw^6$, $P \neq O$



(1,1) Forms and Singular Fibers

[Kodaira]: \exists "Singular fibers", which are \mathbb{P}^1 s intersecting in affine ADE Dynkin diagram $\Rightarrow \omega^{(1,1)}$ from volume form of \mathbb{P}^1

- Kodaira fibers from resolutions of singular fibrations
- Elliptic curve is $y^2 = x^3 + fxw^4 + gw^6$ singular if

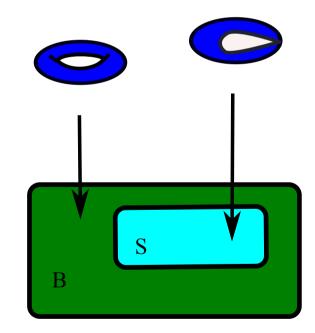
$$\Delta = 4f^3 + 27g^2 = 0$$

Here Δ depends on base:

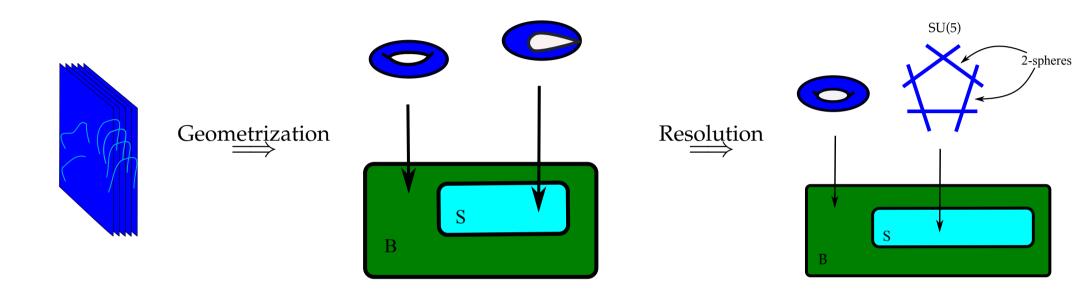
$$\Delta(z) = O(z^n) \quad \Leftrightarrow \quad z = 0 \text{ is surface } S \subset B$$

• Physics:

Syncs with 7-branes intuition in IIB, which sources F_9 and $\tau \sim \log(x - x_0)$ undergoes monodromy $SL_2\mathbb{Z}$



Gauge theory from Singular Fibers



• Resolution of singularities:

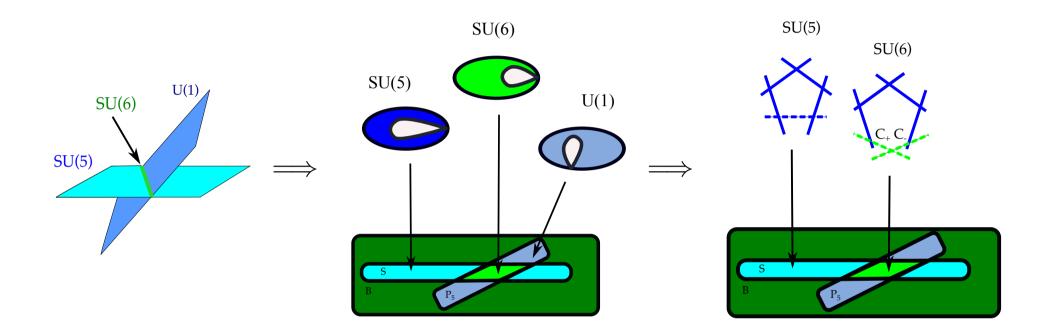
Trees of \mathbb{P}^1 s, intersecting in Affine *SU*(5) Dynkin diagram

 $\mathbb{P}^1 = S^2 = \text{curves in resolved fiber} \xleftarrow{1:1}{\longleftrightarrow} \text{ simple roots of gauge group } SU(5)$

• M/F-theory:

Gauge bosons from $C_3 = A_i \wedge \omega_i^{(1,1)}$ and wrapped M2

Matter

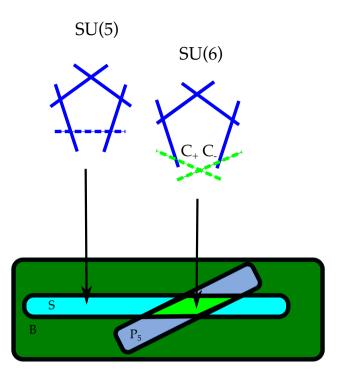


• Matter is localized along codimension 2 loci Σ : Singularity worsens

$$\Delta = P_5 z^5 + O(z^6)$$

• Matter determined by fiber type along codim 2:

 $z = P_5 = 0: SU(6) \rightarrow SU(5) \times U(1):$ $\mathbf{35} \rightarrow \mathbf{24}_0 \oplus \mathbf{1}_0 \oplus \mathbf{5}_6 \oplus \overline{\mathbf{5}}_{-6}$



Geometry:

 \mathbb{P}^1 associated to root α splits into "weights" of $\overline{\mathbf{5}}$

$$\mathbb{P}^1_{\alpha} \quad \to \quad C_+ + C_-$$

 $\frac{M/F-\text{theory picture:}}{\text{Wrapped M2-branes give matter transforming in representation of }SU(5)$ $\Rightarrow \text{Classification of posssible codim 2 fibers?}$

Coulomb phases and Resolutions

M-theory on resolved $\tilde{Y}_{3/4} \Rightarrow$ Coulomb branch of 3/5d, N = 2 theory

- Vector multiplet for gauge group $G: \mathbb{V} = (\phi, A)$
- $\langle \phi \rangle \in \mathrm{CSA}(G) \Rightarrow G \to U(1)^{\mathrm{rank}(G)}$

 \Rightarrow Coulomb branch $\cong \mathbb{R}^{\operatorname{rank}(G)}/W_G$ = Weyl chamber

Including matter: N chiral multiplets Q in representation **R** of G introduces substructure in Weyl chamber.

[deBoer, Hori, Oz][Aharony, Hanany, Intriligator, Seiberg, Strassler] [Diaconescu, Gukov][Grimm, Hayashi]

Coulomb Phases with Matter

Substructure in Weyl chamber:

Q in rep **R** with weight λ

 $\mathcal{L} \supset |\langle \phi, \lambda \rangle|^2 |Q|^2$

 \Rightarrow new walls (where additional massless states arise)

 $\langle \phi, \lambda
angle = 0$

- Lie algebra \mathfrak{g} , and positive roots Φ^+ .
- Weyl chamber:

 $\mathcal{C}^* = \left\{ \phi \in \mathfrak{h} \,, \quad \langle \phi, \alpha \rangle > 0 \,, \quad \text{for all} \quad \alpha \in \Phi^+ \right\} \subset \mathfrak{h} = \mathsf{CSA}$

• Representation **R** with weights λ_I , $I = 1, \dots, r = \dim R$, with

$$\begin{split} \widetilde{\mathfrak{g}} & \to & \mathfrak{g} \oplus \mathfrak{u}(1) \\ & \operatorname{Adj}(\widetilde{\mathfrak{g}}) & \to & \operatorname{Adj}(\mathfrak{g}) \oplus \operatorname{Adj}(\mathfrak{u}(1)) \oplus \mathbf{R}_{+} \oplus \overline{\mathbf{R}}_{-} \,, \end{split}$$

 \Rightarrow Phases for **R** are subwedges with definite sign of $\langle \phi, \lambda \rangle$:

$$\Phi_{\epsilon_1\cdots\epsilon_r} = \langle \phi \in \mathcal{C}^* : \text{ sign}(\langle \phi, \lambda_I \rangle) = \epsilon_I = \pm 1, \quad I = 1, \cdots, r \rangle_{\mathbb{Z}^+}$$

Phases are 1:1 with elements of

$$\{\Phi_{\epsilon_1\cdots\epsilon_r}\}$$
 $\stackrel{1:1}{\longleftrightarrow}$ $\frac{W_{\tilde{\mathfrak{g}}}}{W_{\mathfrak{g}}}$

Main example: $\mathfrak{su}(5)$

 $\mathfrak{g} = \mathfrak{su}(5), \mathbf{R} = \mathbf{5} \text{ or } \mathbf{10}.$

Simple roots

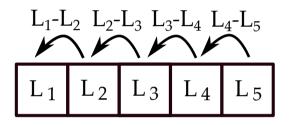
 $\alpha_i = L_i - L_{i+1}$

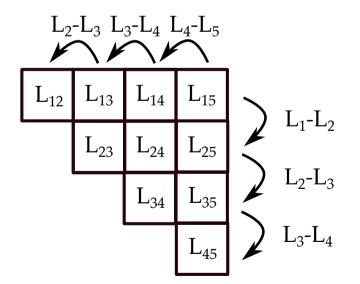
Fundamental weights:

5: $\{L_1, \cdots, L_5\}$

Anti-symmetric representation:

10: $\{L_i + L_j, i < j\}$

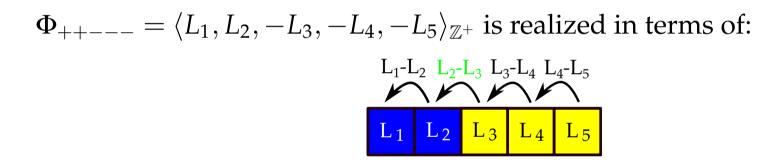




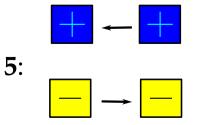
Box Graphs

Then a phase defines a sign/coloring to each weight:

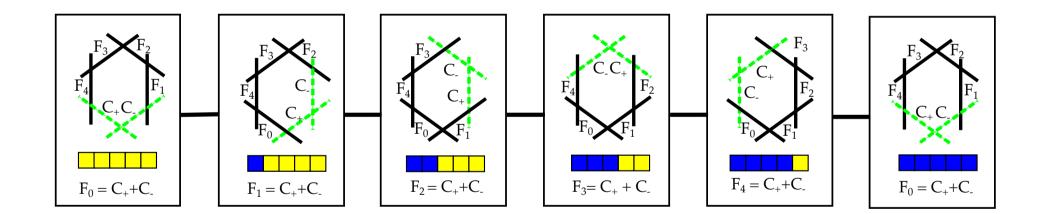
 $\Phi_{\epsilon_1 \cdots \epsilon_r} \Rightarrow \pm / \text{coloring (blue or yellow) of representation graph} \equiv \text{Box graph}$



More importantly: Conversely a sign decoration of a rep graph defines phase if it satisfies flow rules:



Codim 2 Fibers/Phases: $\mathfrak{su}(5) \oplus \mathfrak{u}(1) \rightarrow \mathfrak{su}(6)$

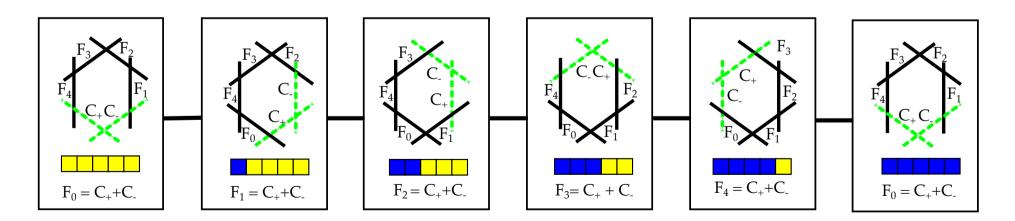


Classification of Singular Fibers

• Codim 1: Classic Algebraic Geometry [Kodaira][Néron]: Lie algebra g

	Singular Fiber Codim 1	\longleftrightarrow	(Decorated) affine Dynkin diagram of \mathfrak{g}	
•	Codim 2: \mathbf{R} = representation of \mathfrak{g}		[Hayashi, Lawrie, Morrison, SSN]	
	Singular Fiber Codim 2	\longleftrightarrow	Box Graph = Decorated rep graph of \mathbf{R}	

Tool: Coulomb phases of 3d N = 2 susy gauge theories.



NB: known also now for other matter and higher rank

II. Abelian Gauge Groups in F-theory

Mordell-Weil group and U(1)s

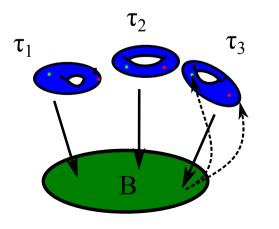
U(1)s arise from additional (1, 1)-forms in fibration

$$C_3 = A \wedge \omega^{(1,1)}$$

(1,1)-forms in elliptic fibration:

- Kodaira singular fiber (\Rightarrow GUT gauge bosons)
- Rational sections of fibration ("rational solutions to the elliptic curve equation" or "marked points")

 $U(1)s \leftrightarrow rational sections$



Math fun facts:

- Elliptic curves have group laws: can add points on curves $p \boxplus q$
- The rational points on an elliptic curve form a free abelian group

Mordell-Weil group $\cong \mathbb{Z}^n \oplus \Gamma$

• Rational points:

$$y^2 = x^3 + fxw^4 + gw^6$$
 $\sigma_0: w = 0, x = y = 1$

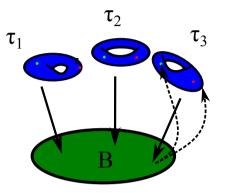
⇒ Recall: Weierstrass generically has only one marked point "origin"

$$y(y+bx^2) = wP(x,y,w)$$

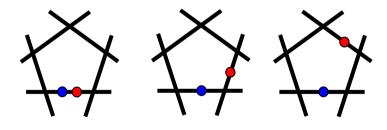
 $\begin{cases} \sigma_0: & w = 0, \ y = 0 \\ \sigma_1: & w = 0, \ y = -bx^2 \end{cases}$

 $\Rightarrow \sigma_0$ is the origin and σ_1 generates Mordell-Weil= \mathbb{Z}

Elliptic fibrations with rational sections



<u>Codim 1</u>: *SU*(5) singular fiber with σ_0 and σ_1 intersecting one of the \mathbb{P}^1 s:

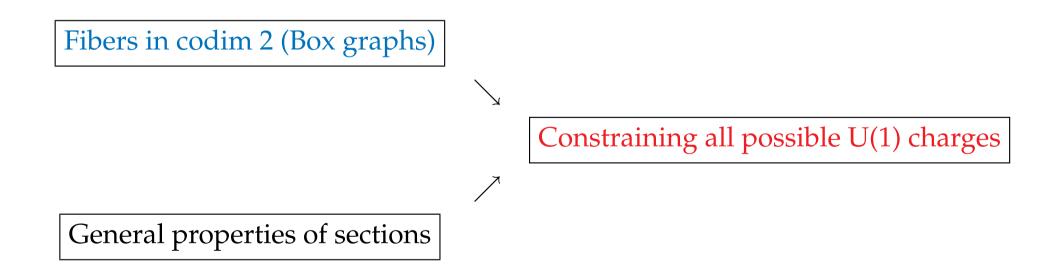


<u>Codim 2:</u>

- $\mathbb{P}^1 \to C^+ + C^-$ with C^{\pm} weights of matter representation.
- U(1) charge: σ_1 intersected with C^{\pm}
- Question: what can σ_0 and σ_1 do in codim 2? \Rightarrow Universal characterization of U(1)s in F-theory

Strategy

[Lawrie, SSN, Wong]



Constraining rational sections in codim 2: CY3 and CY4

[Lawrie, SSN, Wong]

- Compatibility codim 1 and codim 2: $\sigma \cdot F = 1$ etc.
- New effect: sections can contain \mathbb{P}^1 s of fiber \Rightarrow "wrapping"
 - 1. Constraints on normal bundle of rational curves *C*: If $C \subset \sigma \subset Y$, and σ and Y smooth, with σ divisor:

$$0 \to N_{C/\sigma} \to N_{C/Y} \to N_{\sigma/Y}|_C \to 0$$

2. Connecting normal bundle to charge:

$$\sigma \cdot_Y C = -2 - \deg N_{C/\sigma}$$

3. Know $N_{C/Y}$ from codim 2 fibers/box graphs \Rightarrow determine all possible embeddings of $N_{C/\sigma}$ Key assumption: σ is smooth.

Determining intersections and charges

Y = smooth Calabi-Yau three-fold (similar analysis for CY four-fold in paper), $\sigma \subset Y$ a non-singular divisor, $C \subset \sigma$ a rational curve.

(i) Let $(C)^2_{\sigma} = \deg(N_{C/\sigma}) = k$. If $k \ge -1$ the short exact sequence of normal bundles splits and

$$N_{C/Y} = O(k) \oplus O(-2-k).$$

(ii) Let $N_{C/Y} = O(-1) \oplus O(-1)$. If σ smooth, $C \subset \sigma$, then

$$N_{C/D}=O(k)\,,\qquad k\leq -1$$

and there exists a non-trivial embedding

$$O(k) \hookrightarrow N_{C/Y} = O(-1) \oplus O(-1)$$

and

$$\sigma \cdot_{\mathsf{Y}} C = -2 - k \ge -1$$

(iii) Let $N_{C/Y} = O \oplus O(-2)$. If σ smooth, $C \subset \sigma$, then

 $N_{C/\sigma} = O(k)$, k = 0 or $k \le -2$

and there exists a non-trivial embedding

$$O(k) \hookrightarrow N_{C/Y} = O \oplus O(-2)$$

and

$$\sigma \cdot_{\Upsilon} C = -2 - k = \begin{cases} -2 & k = 0\\ \geq 0 & k \leq -2 \end{cases}.$$

Codim 2 Fibers: $SU(5) \rightarrow SU(6)$

Example: $F_1 \rightarrow C^+ + C^-$. Then from box graph analysis C^{\pm} are (-1, -1) curves:

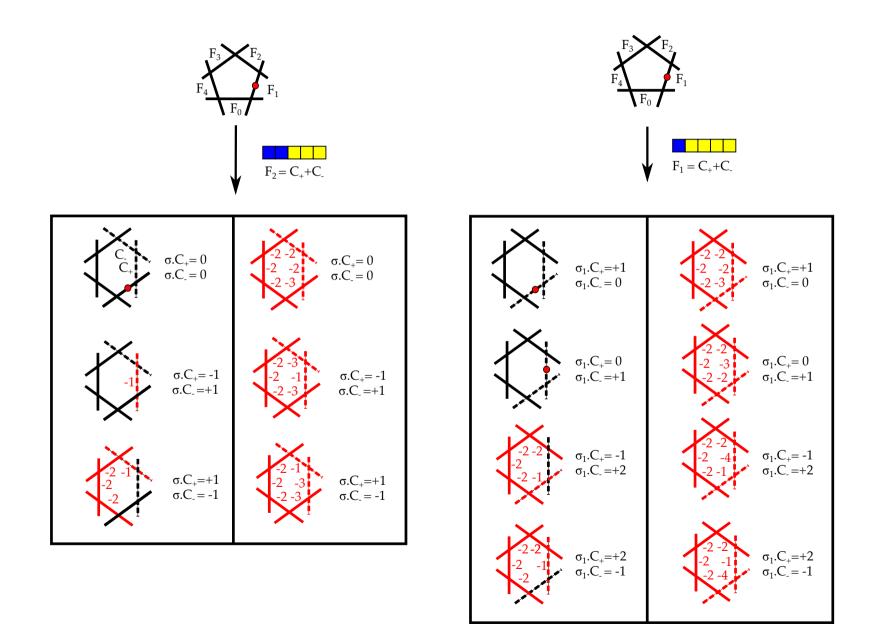
 $N_{C^{\pm}/Y} = O(-1) \oplus O(-1)$

In particular σ = smooth rational section , $C^+ \subset \sigma$

$$\Rightarrow \quad N_{C^+/\sigma} = O(k) \,, \qquad k \leq -1$$

$$\Rightarrow \quad \sigma \cdot_Y C^+ = -2 - k \ge -1$$

Codim 2 Fibers: $SU(5) \rightarrow SU(6)$



U(1) charges

The U(1) charge obtained from intersecting with (Shioda)

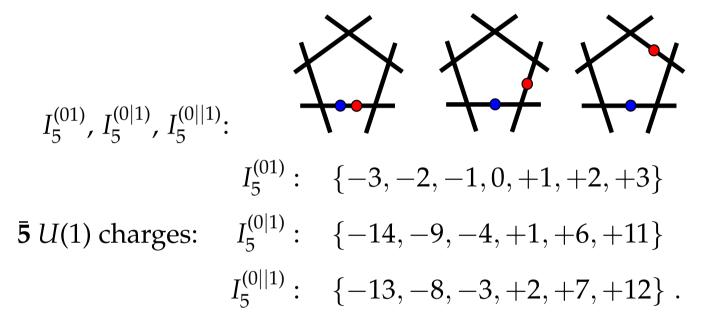
$$S = 5\sigma_1 - 5\sigma_0 + S_f \,,$$

 S_f ensures that roots of SU(5) remain uncharged under U(1).



Complete set of charges

CY three- AND four-fold charges with smooth rational sections are constrained to be as follows:



Similar analysis for I_1^* yields all possible charges for **10** matter.

$$I_{5}^{(01)}: \{ \mp 3, \mp 2, \mp 1, 0, \pm 1, \pm 2, \pm 3 \}$$

10 *U*(1) charges: $I_{5}^{(0|1)}: \{ \mp 13, \mp 8, \mp 3, \pm 2, \pm 7, \pm 12 \}$
 $I_{5}^{(0||1)}: \{ \mp 11, \mp 6, \mp 1, \pm 4, \pm 9 \}$.

U(1) charges of GUT-singlets

Similar analysis for U(1)-charged GUT singlets: key to break to discrete symmetries $\Gamma \subset U(1)$.

Realizes all the KK-charges $\sigma_0 \cdot C$ for these singlets as well \Rightarrow all elements of Tate-Shafarevich, see also [Mayrhofer, Palti, Till, Weigand], [Cvetic, Donagi, Klever, Piragua, Poretschkin] for charge 2 and 3.

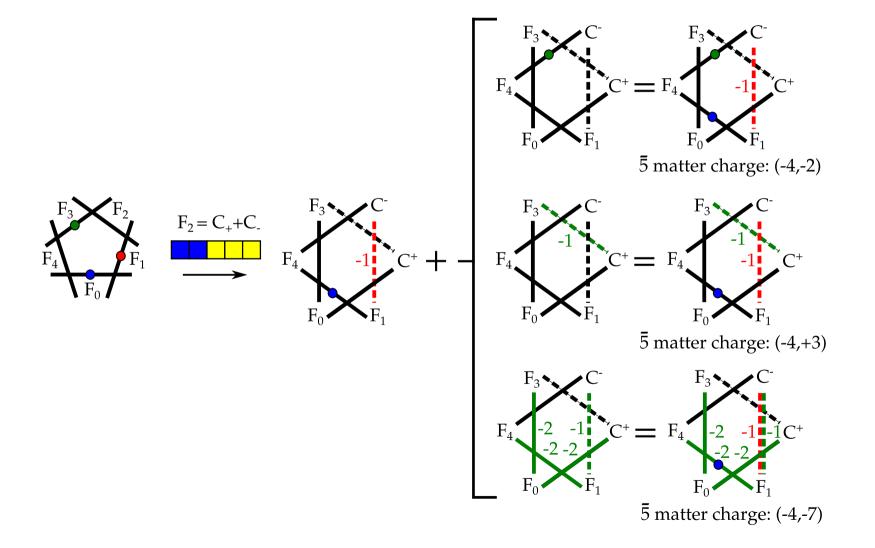
For singlets for CY3: exists criterion for contractibility of rational curves [Reid, Laufer] $N_{C/Y}$ has degree (0, -2), (1, 1), (-3, 1) (For CY4, we determine all possibilities, but don't impose contractability)

[Lawrie, SSN, Wong]

U(1) charges of GUT singlets in

$$\begin{cases} I_5^{(01)} \in \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6\} \\ I_5^{(0|1)} \in \{0, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25\} \\ I_5^{(0||1)} \in \{0, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25\} \end{cases}$$

Multiple U(1)s



III. Phenomenology

1. Uses of Symmetries

Input: U(1)s and 4d spectra from F-theory. Uses of U(1)s:

- Suppress unwanted couplings: Proton decay
- Forbid tree-level μ -term
- Flavor: *U*(1)s for Froggatt-Nielsen

Rapid Proton Decay

Protect model from Proton Decay: half-life > 10^{36} years.

• Dim 4: B/L-violating operators (R-parity violating)

$$W_{\text{dim 4}} = \lambda_{ija}^{(4)} \bar{\mathbf{5}}_i \bar{\mathbf{5}}_j \mathbf{10}_a \supset \lambda_{ija}^0 L_i L_j \bar{e}_a + \lambda_{ija}^1 \bar{d}_i L_j Q_a + \lambda_{ija}^2 \bar{d}_i \bar{d}_j \bar{u}_a$$
$$\sqrt{\lambda^1 \lambda^2} \le \left(\frac{M_{SUSY}}{\text{TeV}}\right) \mathbf{10}^{-12}$$

• Dim 5:

$$W_{\text{dim5}} = \delta_{abci}^{(5)} \mathbf{10}_{a} \mathbf{10}_{b} \mathbf{10}_{c} \mathbf{\bar{5}}_{i}$$

$$\supset \delta_{abci}^{1} Q_{a} Q_{b} Q_{c} L_{i} + \delta_{abci}^{2} \bar{u}_{a} \bar{u}_{b} \bar{e}_{c} \bar{d}_{i} + \delta_{abci}^{3} Q_{a} \bar{u}_{b} \bar{e}_{c} L_{i}$$

$$\delta_{112i}^{1} \leq 16\pi^{2} \left(\frac{M_{SUSY}}{M_{GUT}^{2}}\right) \qquad i = 1, 2$$

 \Rightarrow *U*(1)s or discrete symmetries Γ to control spectrum

(C1.) μ -term:

 $\mu \mathbf{5}_{H_u} \mathbf{\bar{5}}_{H_d}$

(C2.) Dimension five proton decay:

 $\delta_{abci}^{(5)} \mathbf{10}_a \mathbf{10}_b \mathbf{10}_c \mathbf{\bar{5}}_i, \qquad a, b, c, i = \text{matter}$

(C3.) Bilinear lepton number violating superpotential coupling:

 $\beta_i \bar{\mathbf{5}}_i \mathbf{5}_{H_u} \supset \beta_I L_I H_u$, i = matter, I = 1, 2, 3

(C4.) Dimension four proton decay:

 $\lambda_{ija}^{(4)} \bar{\mathbf{5}}_i \bar{\mathbf{5}}_j \mathbf{10}_a, \qquad i, j, a = \text{matter}$

(C5.) Tri-linear lepton number violating Kähler potential couplings:

 $\kappa_{abi} \mathbf{10}_a \mathbf{10}_b \mathbf{\bar{5}}_i^{\dagger} \supset \kappa_{ABI} Q_A \bar{u}_B L_I^{\dagger}, \qquad a, b, i = \text{matter}, A, B, I = 1, 2, 3$

(C6.) Dimension five lepton violating superpotential coupling:

 $\gamma_i \bar{\mathbf{5}}_i \bar{\mathbf{5}}_{H_d} \mathbf{5}_{H_u} \mathbf{5}_{H_u} \supset \gamma_I L_I H_d H_u H_u$, i = matter, I = generation index

(C7.) Dimension five lepton violating Kähler potential coupling:

$$\rho_a \mathbf{\bar{5}}_{H_d} \mathbf{5}_{H_u}^{\dagger} \mathbf{10}_a \supset \rho_A \mathbf{\bar{5}}_{H_d} \mathbf{5}_{H_u}^{\dagger} \bar{e}_A, \qquad a = \text{matter}, A = 1, 2, 3$$

2. Anomalies

*F*_Y GUT breaking generates chiral spectrum \Rightarrow In presence of *U*(1)s: Require $G^2_{MSSM} \times U(1)$ and $U(1)_Y \times U(1) \times U(1)'$ anomaly cancellation

[Dudas Palti], [Marsano, Saulina, SS-N], [Marsano], [Palti]

 \Rightarrow Compatibility constraints between charges and *F*_Y restriction *N*:

q = U(1)-charges:

$$\sum_{a} q_{a}^{\alpha} N_{a} + \sum_{i} q_{i}^{\alpha} N_{i} = 0 \qquad (A1.)$$
$$3 \sum_{a} q_{a}^{\alpha} q_{a}^{\beta} N_{a} + \sum_{i} q_{i}^{\alpha} q_{i}^{\beta} N_{i} = 0 \qquad (A2.)$$

 \Rightarrow Constraints on *M*, *N* and *U*(1) charges.

3. Flavor and Froggatt-Nielsen

Long History of Flavor in F-theory: [Font, Ibañez, Heckman, Vafa, Dudas, Palti, Marchesano, Aparicio, Uranga, Regalado, Zoccarato, King, Leontaris, Ross, Hayashi, Kawano, Tsuchiya, Watari,]

U(1)s to generate flavor textures, Froggatt-Nielsen (FN) type. Tree-level Yukawas + subleading terms from *U*(1)-charged singlets $\epsilon = \frac{\langle S \rangle}{\Lambda}$. Consistent with *SU*(5) GUT e.g. [Dreiner, Thormeier]

$$Y_{u} \sim \begin{pmatrix} \epsilon^{8} & \epsilon^{6} & \epsilon^{4} \\ \epsilon^{6} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & 1 \end{pmatrix}, \quad Y_{d} \sim \begin{pmatrix} \epsilon^{4} & \epsilon^{4} & \epsilon^{4} \\ \epsilon^{2} & \epsilon^{2} & \epsilon^{2} \\ 1 & 1 & 1 \end{pmatrix}$$

For local F-theory GUTs: no realistic FN models from E_8 [Dudas, Palti]. Why reconsider now? New insights and general understanding of U(1)s in F-theory.

New insights from Geometry

Idea of this Program:

1. Phenomenological constraints on Symmetries, 2. Anomalies, and 3. Realistic Flavor combined with global, geometric consistencies imply constraints on resulting 4d EFT.

F-theory/String theory input:

Constraints on F-theory compactification geometries for GUTs with extra U(1)s. Use classification of U(1)s in part II.

Search Strategy

- Strict minimal spectrum (no exotics) solving anomaly eqs (A1.), (A2.)
- Only F-theoretic U(1) charges
- Absence at leading order of all operators (C1.)-(C7.) at leading order.
- Generating of at least one charge neutral coupling

$$Y_{ab}^t: \qquad \lambda_{ab}^t \mathbf{10}_a \mathbf{10}_b \mathbf{5}_{H_u} \supset Y_{AB}^u Q_A \bar{u}_B H_u, \ a, b = \text{matter}$$

• Leading order *Y*^{*b*} can be absent, but regeneration with singlet vevs should violate bounds on (C1.)-(C7.)

 $Y_{ai}^b: \qquad \lambda_{ai}^b \mathbf{10}_a \mathbf{\bar{5}}_i \mathbf{\bar{5}}_{H_d} \supset Y_{AI}^d Q_A \bar{d}_I H_d + Y_{AI}^L L_I \bar{e}_A H_d , \ i, a = \text{matter}$

 \Rightarrow Search by #*U*(1)s, #**5** and **10** matter curves.

Viable models

Two classes of solutions to all above requirements:

1. Solutions which also generate via Froggatt-Nielsen mechanism realistic Yukawa textures

 \Rightarrow

2. Solutions which have charges within known explicit geometric constructions

 $\Rightarrow \checkmark$ (lots of solutions) but need additional structure like fluxes to generate additional flavor hierarchies

FN Benchmark Model

- Require 2 *U*(1)s, 3 **10** for good flavor models
- Singlet vevs with charge *q*: GUT scale mass ratios ($\epsilon \sim .22$)

$$m_{t}: m_{c}: m_{u} \sim 1: \epsilon^{4}: \epsilon^{8}$$

$$m_{b}: m_{s}: m_{d} \sim 1: \epsilon^{2}: \epsilon^{4}$$

$$m_{\tau}: m_{\mu}: m_{e} \sim 1: \epsilon^{2}: \epsilon^{4,5}$$

$$\frac{m_{b}}{m_{t}} = \epsilon^{x} \tan^{-1} \beta \sim \epsilon^{3} \qquad m_{b} \sim m_{\tau} , m_{t} \sim \langle H_{u} \rangle$$
Quark mixing: $\theta_{12} \sim \epsilon, \quad \theta_{23} \sim \epsilon^{2}, \quad \theta_{31} \sim \epsilon^{3}$

$$(1)$$

Yukawa textures that are compatible with *SU*(5) GUT:

$$(*) \quad Y_u \sim \begin{pmatrix} \epsilon^8 & \epsilon^6 & \epsilon^4 \\ \epsilon^6 & \epsilon^4 & \epsilon^2 \\ \epsilon^4 & \epsilon^2 & 1 \end{pmatrix}, \quad Y_d \sim \begin{pmatrix} \epsilon^4 & \epsilon^4 & \epsilon^4 \\ \epsilon^2 & \epsilon^2 & \epsilon^2 \\ 1 & 1 & 1 \end{pmatrix}.$$

Benchmark FN-F-theory model:

GUT Reps	Charges	M	N	MSSM Matter
10 ₁	(10, -7)	1	0	$Q_1, \bar{u}_1, \bar{e}_i, i = 1, 2$
10 ₂	(5, -7)	1	0	$Q_2, \bar{u}_2, \bar{e}_j, \ j \neq i, \ j = 1, 2$
10 ₃	(0, -7)	1	0	$Q_3, ar{u}_3, ar{e}_3$
5_{H_u}	(0,14)	0	-1	H_{u}
$\mathbf{\bar{5}}_{H_d}$	(0,6)	0	1	H_d
$\bar{5}_1$	(0, -9)	0	2	$L_i, i = 1, 2$
5 ₂	(0,1)	3	-2	$L_3, \bar{d_i}, i = 1, 2, 3$

 μ -term charge: (0, 20). Yukawa charge matrix:

$$Q_{Y^{u}} \sim \begin{pmatrix} (20,0) & (15,0) & (10,0) \\ (15,0) & (10,0) & (5,0) \\ (10,0) & (5,0) & (0,0) \end{pmatrix}, \quad Q_{Y^{d}} \sim \begin{pmatrix} (10,0) & (10,0) & (10,0) \\ (5,0) & (5,0) & (5,0) \\ (0,0) & (0,0) & (0,0) \end{pmatrix}$$

• Singlet vev: $S = \mathbf{1}_{(-5,0)} \Rightarrow$ with $s = \frac{\langle S \rangle}{M_{GUT}} = \epsilon^2$: generates successful FN: Yukawas (*)

- All (C1.)-(C7). suppressed, NOT regenerated at same order as Yukawas.
- $U(1)_1$ ensures flavor texture, $U(1)_2$ ensures absence of (C1).-(C7).

Discussion

We determined the most general $U(1)^n$ charges for SU(5) models with $\overline{5}$ and **10** matter.

1. Validity: Smooth versus singular sections

Singular divisors also contribute to (1,1) forms. Normal bundle exact sequence does not hold. What replaces it, and what are constraints?

2. Global Patching:

What are the global compatibility conditions between the fibers?

- 3. Geometric Construction
- 4. Physics:

[Krippendorf, SSN, Wong]

Combine with 1. Phenomenological constraints on Symmetries,

2. Anomalies and 3. Realistic Flavor from FN

 \Rightarrow Successful model: there are only very few similarly successful models within the class of F-theory charges!

 \Rightarrow Construct geometry, fluxes, moduli stabilization.

