The Quest for Neutrino Mass

Martin Hirsch

Astroparticle and High Energy Physics Group Instituto de Física Corpuscular - CSIC Universidad Valencia

Noble Prize 2015

Nobel prize awarded:

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

$\mathcal{I}.$ Introduction

Neutrinos and the SM - Where are neutrinos produced? - A bit of neutrino history

$\mathcal{I}\mathcal{I}.$ Neutrino oscillations

What are neutrino oscillations? - - Solar, atmospheric and reactor neutrinos - status 2015

\mathcal{III} . Absolute mass scale of neutrinos

Single β decay - Supernova 1987A - Cosmology

\mathcal{IV} . Double beta decay

Majorana or Dirac? - Experiments - Mass mechanism - Exotics

V. LNV @ LHC

Left-right symmetry - Exotics - LNV and Leptogenesis

\mathcal{VI} . Summary

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 – p.3/104

$\mathcal{I}.$

Introduction

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 – p.4/104

The standard model

SM masses

Neutrinos lighter than all other fermions by (at least) factor: 10^6

Units: 1 GeV = $1.78 \cdot 10^{-27}$ kg 1 GeV = 10^3 MeV = 10^9 eV

Where are ν 's produced?

Reactors

Accelerators

Earth atmosphere

Earth crust radioactivity

Sun

Supernovae

Active galaxies

Big Bang

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.7/104

Absohrift/15.12.5 M

Offener Brief an die Gruppe der Radioaktiven bei der Geuvereins-Tagung zu Tübingen.

Absohrift

Physikelisches Institut der Eidg. Technischen Hochschule Zürich

Zirich, 4. Des. 1930 Dioriastrasse

Liebe Radioaktive Damen und Herren;

Wie der Veberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näharen auseinendersetsen wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Kerne, sowie des kontinuisrlichen beta-Spektrums auf einen versweifelten Ausweg verfallen um den "Wecheelsats" (1) der Statistik und den Energiesats su retten. Mamilioh die Möglichkeit, es könnten elektrisch neutrale Tellohen, die ich Neutronen nennen will, in den Iernen existioren, Welche den Spin 1/2 heben und das Ausschliessungsprinzip befolgen und the von Lichtquanten musserden noch dadurch unterscheiden, dass sie micht mit Lichtgeschwindigkeit laufen. Die Hause der Neutronen Manate von derzelben Grossenordnung wie die Elektronenwease sein und jedminile night grosser als 0.01 Protonemansses - Das kontinuierliche bein. Spektrum wäre dann varständlich unter der Annahme, dass beim beta-Zerfall mit dem blektron jeweils noch ein Meutron emittiert wird, derart, dass die Summe der Energien von Meutron und klektron konstant ist.

The invention of the ν

Zürich, 4. Dec. 1930

"Dear radio-active Ladies and Gentleman;

As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, \cdots I have hit upon a desperate remedy to save the \cdots law of conservation of energy. Namely, the possibility that in the nuclei there could exist electrically neutral particles, which I will call neutrons*, that have spin 1/2 and obey the exclusion principle and that further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton mass. - The continuous beta spectrum would then make sense \cdots so far I do not dare to publish anything about this idea, and trustfully turn first to you, dear radioactive people, with the question of how likely it is to find experimental evidence · · · Thus, dear radioactive people, scrutinize and judge. -Unfortunately, I cannot personally appear in Tübingen since I am indispensable here in Zürich because of a ball on the night from December 6 to 7. With my best regards to you, and also to Mr. Back, your humble servant

W. Pauli"

* - Neutrino

First detection (1956)

Solar neutrinos

Solar neutrinos

R. Davies Jr. (starting 1967!) Comparison between calculated and measured neutrino events:

 $R(exp/cal) \sim 1/2$

"Solar ν problem"

Solar neutrinos

R. Davies Jr. (starting 1967!) Comparison between calculated and measured neutrino events:

 $R(exp/cal) \sim 1/2$

"Solar ν problem"

Solved in 2000/2002: by experiments: SNO, KamLAND NEUTRINOS CHANGE FLAVOUR!

II.

Neutrino oscillations

Slides from: Mariam Tortola (IFIC, Valencia)

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.14/104

III.

Absolute neutrino mass scale

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.15/104

The β spectrum and m_{ν}

The β spectrum and m_{ν}

- \Rightarrow Classical method to search for neutrino mass
- \Rightarrow Important: Very few events near Q_{β} $\simeq 10^{-13}$ in (Q_{β} 1 eV, Q_{β})

It ain't so easy ...

KATRIN = KArlsruhe TRitium Neutrino Experiment

to weigh a neutrino! • • •

Experiment: KATRIN

- \Rightarrow From source to detector $\simeq 70$ m
- \Rightarrow From 10^{10} electrons per sec to $1 \ e/sec$
- \Rightarrow Will improve sensitivity from $m_{
 u} \lesssim 2.5 \; {
 m eV}$ to $m_{
 u} \lesssim 0.2 \; {
 m eV}$
- \Rightarrow First data 2016 (?), final result in 5 years

Supernova neutrinos

Supernova neutrinos

Cosmology and neutrinos

CMB and PLANCK

CMB and PLANCK

 \Rightarrow "Power spectrum" - Sensitive to: Ω_{Tot} , Ω_B , Λ_C ...

CMB and PLANCK

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.25/104

ν 's and Planck

 \Rightarrow Combination with WMAP, "high-L" and BAO:

 $\sum_i m_{
u_i} \lesssim 0.28 \; {\rm eV} \; {\rm and} \; N_{eff} = 3.32 \pm 0.54$

 \Rightarrow Future data on gravitational lensing sensitive to ca 2025 (?): $\sum_i m_{
u_i} \lesssim 0.05 \text{ eV}$?

$\mathcal{IV}.$

Double beta decay OR Majorana or Dirac?

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.27/104

Particle = Antiparticle ?

P.A.M. Dirac:

"The electric charge of the electron is Q(e) = -1 \Rightarrow anti-particle: positron $Q(e^c) = +1$ "

Particle = Antiparticle ?

P.A.M. Dirac:

"The electric charge of the electron is Q(e) = -1 \Rightarrow anti-particle: positron $Q(e^c) = +1''$

E. Majorana:

"No way to distinguish electrically neutral particles: Anti-particle = Particle"

Double beta decay

 $(Z,A) \Rightarrow (Z+2,A) + 2e^- + 2\overline{\nu}$

 \Rightarrow Two single β decays in the same nucleus

Double beta decay

$$(Z,A) \Rightarrow (Z+2,A) + 2e^- + 2\bar{\nu}$$

 \Rightarrow Two single β decays in the same nucleus

- $(Z,A) \Rightarrow (Z+2,A) + 2e^{-}$
- \Rightarrow violates lepton number
- \Rightarrow only possible if $u \equiv \overline{
 u}$
- \Rightarrow Half-life of decay: $T_{1/2} \propto (m_{
 u})^{-2}$

Distinguish $2\nu\beta\beta$ from $0\nu\beta\beta$?

 \Rightarrow Energy resolution essential

if the experiment wants to separate $2\nu\beta\beta$ from $0\nu\beta\beta$

Distinguish $2\nu\beta\beta$ from $0\nu\beta\beta$?

Experimental sensitivity

Background-free experiment:

 $T_{1/2} \sim M t$

In the presence of background:

$$T_{1/2} \ge c \ a \ \sqrt{\frac{Mt}{B\Delta E}}$$

- M : Source mass
- t : Measuring time
- *B* : Background
- ΔE : Energy resolution
- *a* : Enrichment
- c : constants

1 ton of isotope and $\Delta E \cdot B \leq \frac{1}{t \cdot y}$ for $\langle m_{\nu} \rangle \leq 10 \text{ meV}$

Figure of Merit: ΔE versus b

$0\nu\beta\beta$ decay with ^{76}Ge

	A Z	Stat.:	Where:	$T_{1/2}^{0 uetaeta}$ (y)	$\langle m_{ u} angle$ (eV)	year:
Hd-Mo	⁷⁶ Ge	35.5 kg y	lngs	1.9 10 ²⁵	0.35	2003

Spectrum near peak of $0\nu\beta\beta$:

HD-Mo, setup ANG2-ANG4:

GERDA

Concept: Design of the GERDA experiment: Less radioactive background by operation in liquid Ar Clean room lock Phase-I: Water tank /buffer/ muon veto $M\simeq 20~{\rm kg}~^{76}{\rm Ge}$ First results 2014/2015 Cryogenic vessel Phase-II: $M\simeq 35~{\rm kg}~^{76}{\rm Ge}$ Liquid argon $B \le 10^{-3} \frac{1}{kg \cdot y \cdot keV}$ Ge Array

 \Rightarrow Improve limits to (or find $0
u\beta\beta$ with) half-live up to 10^{26} ys

KamLAND-Zen

Put \sim 400 kg 136 Xe into

 $\frac{\text{KamLAND}}{\text{KamLAND-Zen!}}$

Monte-Carlo prediction:

 $\langle m_{
u}
angle \lesssim 60 \ {
m meV}$ in 2 ys!

Based on $b \lesssim 10^{-1}/(\mathrm{kg} \cdot \mathrm{y} \cdot \mathrm{keV})$

KamLAND-Zen

Background! 110m Ag $\gtrsim 100$ larger than MC

Fukushima?

PRL 110 (2013) 062502:

Limit after subtraction: Statistics: 89.5 kg \cdot ys $T_{1/2}^{0
uetaeta}(^{136}Xe) \ge 1.9 \times 10^{25}$ ys 90 % c.l.

> Neutrino 2014: Purification in progress, has reduced $^{110m}Ag \sim 1/10$ and continues ...

(Half a) TPC:

Setup of the EXO-200 experiment:

Nature 510 (2014) 229: limit for $0\nu\beta\beta$ -decay for ¹³⁶Xe:

 $T_{1/2} \ge 1.1 imes 10^{25} {
m ys}$

based on 100 kg·ys of data

Updated $0\nu\beta\beta$ result Nature 510 (2014) 229 $b = 1.7 \times 10^{-3}/(\text{kg} \cdot \text{y} \cdot \text{keV})$ Statistics: 100 kg \cdot ys $T_{1/2}^{0\nu\beta\beta}(^{136}Xe) \ge 1.1 \times 10^{25}$ ys 90 % c.l.

nEXO:

Proposal to use 5 tons of ¹³⁶Xe "Scale up EXO" Install in SNOIab

Phase-I: No Ba-tagging $\langle m_{
u} \rangle \lesssim 10 \text{ meV} \text{ in 5 ys}$ $T_{1/2}^{0
uetaeta}(^{136}Xe) \ge 7 imes 10^{27} \text{ ys}$

> Phase-II: With Ba-tagging $\langle m_{\nu} \rangle \lesssim 4 \text{ meV } ??$ $T_{1/2}^{0\nu\beta\beta}(^{136}Xe) \ge 2 \times 10^{28} \text{ ys}??$

Mass mechanism

Convert 2 neutrons to 2 protons + 2 electrons, simplest possibility for a $0\nu\beta\beta$ diagram:

Mass mechanism

Convert 2 neutrons to 2 protons + 2 electrons, simplest possibility for a $0\nu\beta\beta$ diagram:

Neutrino propagator:

$$\int \frac{d^4p}{(2\pi)^4} \frac{m_{\nu} + \not p}{p^2 - m_{\nu}^2}$$

"Mass mechanism" because weak interaction is left-handed:

$$P_L(\boldsymbol{m_{\nu}} + \not p)P_L = \boldsymbol{m_{\nu}}P_L$$

 $\mathcal{M}_{0
u\beta\beta}$ as function of $\langle m_{\nu} \rangle$

Take out m_{ν} from definition of $\mathcal{M}_{0\nu\beta\beta}$:

Constant for small $m_{\nu} \Rightarrow T_{1/2} \sim m_{\nu}^{-2} \mathcal{M}_{L}^{-2}$ $(\sim 1/m_{\nu})^{2}$ for large $m_{\nu} \Rightarrow T_{1/2} \sim m_{\nu}^{2} \mathcal{M}_{H}^{-2}$

Take out m_{ν} from definition of $\mathcal{M}_{0\nu\beta\beta}$:

Constant for small $m_{\nu} \Rightarrow T_{1/2} \sim m_{\nu}^{-2} \mathcal{M}_L^{-2}$ "long-ro $(\sim 1/m_{\nu})^2$ for large $m_{\nu} \Rightarrow T_{1/2} \sim m_{\nu}^2 \mathcal{M}_H^{-2}$ "short-ro

"long-range" amplitude
"short-range" amplitude

Three generations of ν

For 3 generation of neutrinos, 2 independent Δm_{ij}^2 , and 3 independent angles θ_{ij} :

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot P$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot P$$

Three generations of ν

For 3 generation of neutrinos, 2 independent Δm_{ij}^2 , and 3 independent angles θ_{ij} :

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot P$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot P$$

$$\frac{\text{atmospheric}}{\Delta m_{32}^2} \qquad \Delta m_{31}^2 \qquad \Delta m_{21}^2$$

Three generations of ν

For 3 generation of neutrinos, 2 independent Δm_{ij}^2 , and 3 independent angles θ_{ij} :

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot P$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot P$$

$$\frac{\text{atmospheric}}{\Delta m_{32}^2} \qquad \frac{\text{reactor}}{\Delta m_{31}^2} \qquad \frac{\text{solar}}{\Delta m_{21}^2}$$

 \Rightarrow P - diagonal matrix of Majorana phases

 $\Rightarrow \Delta m^2_{32} \equiv \Delta m^2_{31} - \Delta m^2_{21} \simeq \Delta m^2_{31}$

Neutrino oscillation data

Neutrino mixing in $0\nu\beta\beta$

Each vertex:

 $W^{-}_{\mu}\bar{e}\gamma^{\mu}P_{L}U_{ei}\nu_{i}$

Full propagator reads:

$$U_{ei}^2 \int \frac{d^4p}{(2\pi)^4} \frac{m_{\nu_i} + \not p}{p^2 - m_{\nu_i}^2}$$

Define in the limit of small neutrino masses:

$$\langle m_{m
u}
angle = \sum_i U_{ei}^2 m_{
u_i}$$

 $\langle m_{\nu} \rangle$ and ν spectrum

Neutrinos mix, thus:

$$\langle m_{\nu} \rangle = \sum_{j} U_{ej}^{2} m_{j}$$

= $c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2} + s_{13}^{2} e^{i\beta} m_{3}$

A priori seven unknown quantities:

- \Rightarrow 3 masses: m_i
- \Rightarrow 2 angles: θ_{12} and θ_{13}
- \Rightarrow 2 CP violating phases: α and β

 $\langle m_{\nu} \rangle$ and ν spectrum

Neutrinos mix, thus:

$$\langle m_{\nu} \rangle = \sum_{j} U_{ej}^{2} m_{j}$$

= $c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2} + s_{13}^{2} e^{i\beta} m_{3}$

+ Neutrino oscillation data:

- \Rightarrow 1 mass: $m_{
 u_1}$ + $\Delta m^2_{
 m Atm}$, $\Delta m^2_{
 m O}$
- \Rightarrow 2 angles: θ_{\odot} and θ_R
- \Rightarrow 2 CP violating phases: α and β
- \Rightarrow Two cases for hierarchy (NH and IH)

$\langle m_{\nu} \rangle$ versus m_{ν_1} - status 2014

Global fit data from: Forero, Tortola & Valle; arXiv:1405.7540

all ranges at 1 σ c.l.

 $\langle m_{\nu} \rangle$ versus m_{ν_1} - status 2014

Global fit data from: Forero, Tortola & Valle; arXiv:1405.7540

all ranges at 1 σ c.l.

 \Rightarrow Planck - limits from cosmological data $\Rightarrow T_{1/2}(^{136}Xe)$ - limit from KamLAND-Zen

Black Box Theorem

Schechter & Valle, PRD 1982 Takasugi, PLB 1984

lf 0νββ is observed the neutrino is a Majorana particle!

 \Rightarrow 4-loop "butterfly" diagram: $m_{\nu} \sim 10^{-24} \text{ eV}$

 \Rightarrow Tree-level, 1-loop, \cdots 4-loop possible

\Rightarrow Rule of thumb:

- ightarrow Models with tree-level, 1-loop $m_{
 u}$ mass mechanism dominates
- ightarrow Models with 2-loop, 3-loop $m_{
 u}$ mass mechanism \sim SR
- ightarrow Models with 4-loop $m_{
 u}$ SR dominates

Helo et al., 2015

Duerr et al 2011

$\mathcal{IV}.$

$0\nu\beta\beta$ decay, LNV and LHC

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.57/104

Left-right symmetry

Motivation:

Extend standard model gauge group to:

 $SU(3)_c \times SU(2)_L \times U(1)_Y \to SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

If $m_{W_R} \gg m_{W_L}$ - interactions mostly left-handed

 \Rightarrow LR symmetry implies: $L \leftrightarrow L^c$ - ν_R is part of theory!

 \Rightarrow Seesaw mechanism included in theory

GCU in LR?

NOT TESTABLE EXPERIMENTALLY!

Running of α_i^{-1} in the minimal LR model SM + $\Phi_{1,2,2,0}$ + $\Phi_{1,3,1,-2}$ + $\Phi_{1,1,3,-2}$ unifies at E = (few) 10¹⁵ GeV if $M_{LR} \simeq 10^{11}$ GeV

GCU in LR!

Black Box: Experiment

The experimentalist sees:

 W_R and $0\nu\beta\beta$ decay

The experimentalist sees:

If $m_N o \infty$ limit on $m_{W_R} o 0$

With $T_{1/2}^{0\nu\beta\beta}(^{136}Xe) \ge 1.6 \times 10^{25}$ ys:

$$m_{W_R} \gtrsim 1.3 \left(\frac{\langle m_N \rangle}{[1 \text{TeV}]} \right)^{-1/4} \text{TeV}$$

Example: $W_R @ LHC$

Keung & Senjanovic, 1983

Signal:

Example: $W_R @ LHC$

Keung & Senjanovic, 1983

Signal:

Plot from: S.P. Das et al., PRD 86

 \Rightarrow Assumes $\mathcal{L}=30~{\rm fb}^{-1}$ at $\sqrt{s}=14~{\rm TeV}$

W_R @ *LHC* - *2012*

Signal:

Plot from: ATLAS, Eur.Phys.J C72:

 \Rightarrow Assumes $\mathcal{L}=2.1~{\rm fb}^{-1}$ at $\sqrt{s}=7~{\rm TeV}$

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.65/104

Status LHC, June 2014

CMS (and ATLAS) with $\sqrt{s} = 8$ TeV: Non-observation gives stringent limits on short-range W_R diagrams for $0\nu\beta\beta$ decay.

Assumes: $g_R = g_L!$

Signal:

Dijet searches at LHC

ATLAS collaboration arXiv:1407.1376

Absence of resonance(s) can be interpreted as upper limits on couplings as function of (hypothetical) resonance mass

Dijet and $0\nu\beta\beta$ decay

Absence of $pp \rightarrow W_R \rightarrow jj$ gives limit on $0\nu\beta\beta$:

 \Rightarrow full (dashed) current limits (future sensitivity) for dijet data

CMS excess: arXiv:1407.3683

Note:

- \Rightarrow excess only in ee final state
- \Rightarrow only 1 out of 14 events is like-sign
- \Rightarrow no excess is seen in m_{e_2jj}

ATLAS like-sign lepton +jj

ATLAS; arXiv:1506.06020

does not confirm excess in *eejj* ... searches only for like-sign leptons

Note: For $m_{eejj} \ge 1.5$ TeV (5-6) events expected (BG) Zero events observed!

ATLAS diboson searches

arXiv:1506.00962

Search for dijets compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties

- \Rightarrow Note: Event samples are NOT independent, cuts "overlap"
- \Rightarrow More than 60 cites in 2 months!

ATLAS diboson searches

Conclusions

Neutrino mass models and $0\nu\beta\beta$ decay

Standard model fermions

Under the SM group, $SU(3)_c \times SU(2)_L \times U(1)_Y$, we have weak doublets:

$$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \quad \propto \quad (\mathbf{1}, \mathbf{2}, -\frac{1}{2}) \qquad \text{and} \qquad Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \quad \propto \quad (\mathbf{3}, \mathbf{2}, \frac{1}{6})$$

and weak singlets:

$$e^{c} = e_{R}^{*} \propto (\mathbf{1}, \mathbf{1}, 1) , \quad u^{c} = u_{R}^{*} \propto (\bar{\mathbf{3}}, \mathbf{1}, -\frac{2}{3})$$

 $d^{c} = d_{R}^{*} \propto (\bar{\mathbf{3}}, \mathbf{1}, \frac{1}{3})$

For example SM Yukawa interactions:

$$\mathcal{L}^{\mathrm{Yuk}} = Y_u Q \cdot H u^c + Y_d Q \cdot \tilde{H} d^c + Y_e L \cdot \tilde{H} e^c$$

where $H \propto (\mathbf{1}, \mathbf{2}, \frac{1}{2})$ and $\tilde{H} = (i\tau_2)H^*$

Theoretical expectation?

Majorana Neutrino mass

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}.$

Weinberg, 1979

Smallness of neutrino mass can be "explained" by:

 \Rightarrow High scale: Large Λ "classical" seesaw Minkowski, 1977

Yanagida, 1979 Gell-Mann, Ramond, Slansky, 1979 Mohapatra, Senjanovic, 1980 Schechter, Valle, 1980

Foot et al., 1988

Theoretical expectation?

Majorana Neutrino mass generated from an n-loop dimension d diagram:

$$m_{\nu} \simeq \frac{(Yv)^2}{\Lambda} \cdot \boldsymbol{\epsilon} \cdot \left(\frac{Y^2}{16\pi^2}\right)^{\boldsymbol{n}} \cdot \left(\frac{Yv}{\Lambda}\right)^{d-5}$$

Smallness of neutrino mass can be "explained" by:

- ⇒ High scale: Large Λ "classical" seesaw
- ⇒ Loop factor: $n \ge 1$ + "smallish" $Y \sim \mathcal{O}(10^{-3} - 10^{-1})$
- \Rightarrow Higher order: d = 7, 9, 11
- \Rightarrow Nearly conserved *L*, i.e. small ϵ ("inverse seesaw")
- \cdots or combination thereof

$\Delta L = 2$ operators

d = 5:

Weinberg, 1979

$$\mathcal{O}_W \propto \frac{c_{ij}}{\Lambda} (L_i H) (L_j H)$$

One d=5

$\Delta L = 2$ operators

d = 5:

Weinberg, 1979

$$\mathcal{O}_W \propto \frac{c_{ij}}{\Lambda} (L_i H) (L_j H)$$

One d=5

Example realization, seesaw type-I:

$\Delta L = 2$ operators

d = 5:

Weinberg, 1979

$$\mathcal{O}_W \propto \frac{c_{ij}}{\Lambda} (L_i H) (L_j H)$$

One d=5

Example realization, seesaw type-I:

 $\langle H \rangle$ $\langle H \rangle$ \downarrow ν_R ν_L $0
u\beta\beta$ decay:

Mass mechanism!

Example d = 7: $LLQd^{c}H$

Graphically:

Example d = 7: $LLQd^{c}H$

Again, more than one realization. Example:

 $S_{3,1,-1/3}$ - singlet leptoquark $S_{3,2,1/6}$ - doublet leptoquark

$$\Delta L=2$$
 , so \dots

Example d = 7: $LLQd^{c}H$

Again, more than one realization. Example:

 $S_{3,1,-1/3}$ - singlet leptoquark $S_{3,2,1/6}$ - doublet leptoquark

$$\Delta L=2$$
 , so ...

 $0
u\beta\beta$ decay:

Long range contribution!

$$\mathcal{A} \propto rac{\mu imes \langle H^0
angle}{m_{3,1,1/3}^2 m_{3,2,1/6}^2} \ \propto rac{v}{\Lambda^3}$$

No helicity suppression!

Example d = 7: $LLQd^{c}H$

Again, more than one realization. Example:

 $S_{3,1,-1/3}$ - singlet leptoquark $S_{3,2,1/6}$ - doublet leptoquark

$$\Delta L=2$$
 , so \dots

1-loop neutrino mass:

Example d = 7: $LLQd^{c}H$

Again, more than one realization. Example:

 $0\nu\beta\beta$ decay has both contributions:

Example d = 9: $LLQd^cQd^c$

Many, many realizations ...

Example d = 9: $LLQd^cQd^c$

Many, many realizations ... One example:

 $S_{6,3,1/3}$ - triplet diquark $S_{3,2,1/6}$ - doublet leptoquark

Example d = 9: $LLQd^cQd^c$

Many, many realizations ... One example:

 $S_{6,3,1/3}$ - triplet diquark $S_{3,2,1/6}$ - doublet leptoquark 0
uetaeta decay without neutrino!

 $\Delta L = 2$, so ...

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.88/104

Example d = 9: $LLQd^cQd^c$

Many, many realizations ... One example:

 $S_{6,3,1/3}$ - triplet diquark $S_{3,2,1/6}$ - doublet leptoquark

2-loop neutrino mass!

Example d = 9: $LLQd^cQd^c$

Many, many realizations ... One example:

Again, $0\nu\beta\beta$ decay has two contributions:

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.90/104

Amplitude for $(Z, A) \rightarrow (Z \pm 2, A) + e^{\mp}e^{\mp}$ can be divided into:

Mass mechanism

"long-range"

Amplitude for $(Z, A) \rightarrow (Z \pm 2, A) + e^{\mp}e^{\mp}$ can be divided into:

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.92/104

Leptogenesis and LHC

4th Chilean School of HEP, Valparaiso, (13-15)/01/2016 - p.97/104

LNV @ LHC

LNV @ LHC

Example:

 $u\bar{d} \to W_R^+ \to l^+ N \to l^+ l^+ j j$

LNV @ LHC

Example:

 $u\bar{d} \rightarrow W_R^+ \rightarrow l^+ N \rightarrow l^+ l^+ j j$

Example:

 $uu \to S_{6,3,1/3} \to 2S_{3,2,1/6} \to l^+ l^+ j j$

 $ug \rightarrow S_{3,1,1/3} + l^+ \rightarrow l^+ l^+ j j j$

$0\nu\beta\beta$ and LHC ($\sqrt{s} = 14$ TeV)

J.C. Helo et al, PRD88 (2013)

 \Rightarrow Assumed upper limit on $\sigma(pp \rightarrow X)$: 10^{-2} fb

 $\Rightarrow m_F = 1000 \text{ GeV}$ (realistic (?) case)

 \Rightarrow Full lines: Br= 10^{-1} , dashed lines Br= 10^{-2}

Leptogenesis

Sakharov's conditions:

(i) Baryon number violation(ii) C and CP violation(iii) departure from thermal equilibrium

(e) Tree

In Leptogenesis:

(i) Convert L to B through SM sphalerons

(ii) CP violation through interference tree \leftrightarrow 1-loop

(iii) L out of equilibrium via right-handed neutrino decay

Leptogenesis and LHC

Deppisch, Hartz & Hirsch PRL 112 (2014)

blue lines washout factor Γ_W - Suppression of L $\propto 10^{-\Gamma_W}$

Observation of LNV @ LHC implies: (High-scale) Leptogenesis is ruled out!

Loopholes???

(i) Resonant LG with $m_N \ll m_X$?

(ii) Hide LG in τ 's?

LG and $0\nu\beta\beta$ decay

Deppisch et al., 2015 If $0\nu\beta\beta$ is found and demonstrated to be not due to $\langle m_{\nu} \rangle$ LG ruled out above scale λ