

RHIC Experiments in Transition at Brookhaven National Laboratory

Outline: • Today to 2022

Edouard Kistenev Brookhaven National Laboratory PHENIX Experiment

Brookhaven National Laboratory in Transition

3

Relativistic Heavy Ion Collider Bird's eye view

An experimentalist view of Heavy Ion Collisions

The collective nature of the the collision created medium converts initial state azimuthal asymmetry into a *strong* signal in the final state particle emission pattern $dn/d\phi \sim 1 + 2v_2(p_T) \cos(2\phi)$

$$\frac{dN}{d(\phi - \Phi_n)} = N_0 \left[1 + 2\sum v_n \cos \left\{ n(\phi - \Phi_n) \right\} \right]$$
$$v_n = \left\langle \cos \left\{ n(\phi - \Phi_n) \right\} \right\rangle$$

V3 and higher tells of fluctuations

2015-09-30

E.Kistenev, UTFSM, 2016

January 18, 2016

QGP program near Tc

- Detailed inspection of QGP near T_c using probes over a broad range of scales
 - Jet and Di-jet
 - γ-jet correlations
 - Heavy flavor jets
 - Separated Y(1s),
 Y(2s), Y(3s)

J/ψ production and differential suppression

Evolution of the Experiment (PHENIX)

9

Documented: <u>http://www.phenix.bnl.gov/plans.html</u>

	Current PHENIX	sPHENIX (+fsPHENIX)	An EIC detector
	 15y+ operation 100+M\$ investment Broad spectrum of physics (QGP, Hadron Physics, DM) 150+ published papers to date Last run in this form 2016 	 Comprehensive central upgrade based on BaBar magnet Rich jet and beauty quarkonia physics program → nature of QGP fsPHENIX : forward tracking, e&h calorimetry and muon ID → Spin, CNM 	<list-item><list-item><list-item></list-item></list-item></list-item>
~	2000 2017- RHIC: A+A, spin-polarize	\rightarrow 2020 ~2 d p+p, spin-polarized p+A	2025 Time EIC: e+p, e+A

E.Kistenev, UTFSM, 2016

STAR Science for the Decade – QM2011 – Carl Gagliardi

sPHENIX experiment (already in construction stage illegal)

Detailed CAD model

Beam view

January 18, 2016

E.Kistenev, UTFSM, 2016

11

By Justin Eure

January 18, 2016

E.Kistenev, UTFSM, 2016

Tracking : Performance in Geant4

Also full detector HIJING simulation in Geant4 Eff. = 92% at 1 GeV/c and 97% at high p_T .

January 18, 2016

E.Kistenev, UTFSM, 2016 14

Backbone: New Jet and EM Id Calorimetry

January 18, 2016

EMCAL

E.Kistenev, UTFSM, 2016

INNER HCAL

15

BROOKHAVEN

Electron ID: EM Calorimeter

- Electron ID using a compact EMCal with assistance from inner Hcal ($|\eta|$ <1)
- Scintillation fiber-W powder sampling calorimeter (SPACAL), dE/E ~ 12%/ \sqrt{E}

Dealing with technological challenges

Figure 2.8: Left: Fibers filling a stack of tapered hold meshes which are separated by only a small amount to enable filling. Right: Fiber assembly after fully separating the meshes in preparation for insertion in the mold.

January 18, 2016

E.Kistenev, UTFSM, 2016

VEN

17

Bricksmanship in modern physics

Figure 2.4. Modules produced at UIUC for the 8x8 tower prototype

Figure 2.5. Left: Fly cutting tool used at UIUC to finish the ends of the fibers. Right: Fibers ends after fly cutting step.

January 18, 2016

E.Kistenev, UTFSM, 2016

Hadron Calorimeter

- Novel design using tilted iron plates doubling as field return
- Active medium scintillators in the gaps between plates
- Optical readout (WLS fibers and SiPM's);
- PoP Prototype tested in FermiLab in 2014
- System prototype is in assembly stage. Beam test in April 2016 at FNAL

MAGNET

EMCA

E.Kistenev, UTFSM, 2016

Radiation Damage in SiPMs

Estimated neutron flux in the STAR IR

Measured neutron flux in the PHENIX IR

Damage is caused mainly by neutrons (E ~ MeV)

Measure thermal neutron flux in RHIC IR and estimate MeV equivalent neutrons using MC Estimates in STAR for 2013 run (L=526 pb⁻¹): R= 3-8 cm, $|Z| < 10 \text{ cm} : \Phi_{eq} \sim 8 \times 10^{10} \text{ n/cm}^2$ R= 100 cm, Z = 675 cm : $\Phi_{eq} \sim 2.2 \times 10^{10} \text{ n/cm}^2$

Neutron measurements at the Indiana University LENS Facility

C.Woody, sPHENIX Collaboration Meeting, Rutgers, 12/11/2015

Radiation Damage in SiPMs

Hamamatsu S12572-025P

Primary effect seems to be increase in noise and not loss of PDE

Operationally we plan to keep V_b constant for currents up to ~ 1 mA

Will require cooling to maintain ~ 20° C

EM Calorimeter Energy resolution

Figure 1.3. Expected energy resolution of new BEMC

sPHENIX exploded view

Use jets as probe of QGP in sPHENIX

BROO

NATIONAL LABORATOR

B-quark jet tagging

Heavy quark provide very different Sensitivity to collision and radiative energy Loss in QGP from light quark/gluon Jet/Axis Probed by heavy quark jets at sPHENIX PYTHIA p+p 200 GeV Secondary Vertex Jet $p_{\tau} = 20 \text{ GeV}$ 5 10 B-jet purity after DCA based tagging Decay Length Cut on N track Track Primary Vertex Impact off Parameter vertex one track cut p_ > 2.0 GeV/c p_ = 1.0-2.0 Ge p_ = 0.5-1.0 GeV/c σ = 76.3 μm $\sigma = 48.8 \, \text{um}$ σ = 31.9 μm two track cut 10 three track cut 10³ 10² 10 01 02 0.3 0.4 0.5 0.6 0.9 0.7 0.8 10² *b*-jet efficiency 10 E.Kistenev, UTFSM, 2016 0.05 -0.1 -0.05 0 0.1 -0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 25 DCA (cm) DCA (cm) DCA (cm)

Forward spectrometer of sPHENIX: **fsPHENIX**

- Shared detector with future eRHIC program and deliver an unique forward program with RHIC's pp/pA collision
- white paper submitted to BNL in Apr 2014: http://www.phenix.bnl.gov/plans.html

EIC detector GEM + H-Cal \rightarrow Forward jet with charge sign tagging

- $\rightarrow A_N$ in hadron collisions \rightarrow polarized Drell-Yan with
- muons
- \rightarrow Forward-central correlations

+ central detector (sPHENIX) + reuse current forward silicon tracker & Muon ID detector

fsPHENIX DY – challenging and very interesting

Statistics-kinematic coverage comparisons

log_₀(Q²) JLab olarized SIDIS data COMPASS HERMES 1.6 CLAS Polarized Drell-Yan plan 1.4 COMPASS-II sPHENIX 200GeV 1.2 fsPHENIX 510GeV 0.8 0.6 0.4 0.2 0<u>L</u> -0.5 log₁₀(x, -2.5 -1.5 -2 -1

Major challenge on background and potential improvement

Shaded regions deliniate $\delta A_T^{\sin \phi_S} < 0.1$

E.Kistenev, UTFSM, 2016

27

January 18, 2016

Challenge: Forward field design

- **BaBar superconducting** magnet
 - Length: 385 cm
 - Nominal field: 1.5T
 - **Designed for homogeneous B-**_ field in central tracking
- **Field calculation and yoke** tuning
 - Field calculated and cross checked: POISSION, FEM, **OPERA and COMSOL**
- For forward spectrometer
- Longer field volume for forwar
 - the magnet -> better forward bending
 - To work well with RICH needs [§] 10³ _ field-shaping yoke: Forward & central Hcal + Steel lampshade

Field calculation in COMSOL (SBL

BROO

Momentum Resolution at high momentum limit

January 18, 2016

E.Kistenev, UTFSM, 2016

High energy polarized EIC concepts

- Highly polarized electron and nucleon beams
- Ion beams from D-> U or Pb
- Variable C.M. energy from 20 -> 100 GeV (150 upgradable)
- High collision luminosity 10³³-10³⁴ cm⁻²s⁻¹ (HERA luminosity ~ 5x10³¹ cm⁻² s⁻¹)
- Possibility of more than one interaction regions

Physics goals: nucleus as a laboratory for QCD Outlined in EIC white paper, arXiv:1212.1701

- The compelling questions:
 - Where does the saturation of gluon densities set in?
 - How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?
- Deliverable measurement using electron-ion collisions
 - Probing saturation of gluon using diffractive process and correlation measurements
 - Nuclear modification for hadron and heavy flavor production in DIS events; probe of nPDF
 - Exclusive vector-meson production in eA
- Leading detector requirement:
 - ID of hadron and heavy flavor production
 - Large calorimeter coverage to ID diffractive events
 - Detection/rejection of break-up neutron production in eA collisions

eRHIC era: sPHENIX based concept for an EIC Detector

- -1<η<+1 (barrel) : sPHENIX + Compact-TPC + DIRC
- -4<η<-1 (e-going) : High resolution calorimeter + GEM trackers
- +1<η<+4 (h-going) :

400 -

- 1<η<4 : GEM tracker + Gas RICH</p>
- 1<η<2 : Aerogel RICH
- 1<η<5 : EM Calorimeter + Hadron Calorimeter
- ZDC and roman pots in Hadron Direction

η=+1^{//}

R (cm)

Summary

- RHIC program in this decade is about quantitatively studies of QGP near T_c using probes over a broad range of scales
- Initial stage of this program sPHENIX – just underwent successful DOE scientific review;
- It got substantial bust from the shipment of BaBar magnet to BNL
- Both sPHENIX and STAR are developing forward upgrades aimed towards transverse spin physics;
- Both upgrade paths could lead to a capable EIC detector and broad ep/eA program

Plenty of opportunities for Universities and good students

Motto of experimentalist (violated daily)

Garage Door Openers

Or any other such technologies deemed to be unworthy of the professional and reliable operation of a world-class physics detector.

The control devices that we are using are the type found in military, medical equipment and automobile engines. That's why your car doesn't just shut off in the middle of the Long Island Expressway. *SB, 1/14/2016*