Status of electron cloud studies

L. Mether (CERN), K.Ohmi (KEK), G. Rumolo (CERN)

Outline

- Introduction
- Review of electron cloud studies
 - Build up
 - Instability
- Further studies & desired input

Electron cloud

- Seeds: photoelectrons from SR
- Seed electrons accelerated by beam, produce secondary electrons when hitting beam screen
- May lead to:
 - Avalanche electron production (multipacting)
 - Exponential growth of electron density

- Trailing bunches of the train interact with a dense e-cloud
 - Transverse instabilities
 - Transverse emittance blow-up
 - Particle losses
- Other unwanted effects:
 - Heat load on the beam chambers
 - Vacuum degradation

Electron cloud studies so far

Build up (CERN)

- Simulation studies
- Initial estimates for LHC-type beam screen
 - Dipole, quadrupole, drift
 - 25 ns and 5 ns beam
- Estimated
 - Threshold SEY for multipacting
 - Heat loads on beam screen
 - Electron density around beam
- Parameter scans

Instabilities (KEK)

- Simulations and analytical estimates for single bunch instability
- LHC-type beam screen
 - Dipole
 - 25 ns and 5 ns beam
- Estimated
 - Threshold electron densities for instability

Build-up simulations

- The build-up depends crucially on:
 - 1. Number and distribution of photoelectrons
 - In magnetic fields, electrons produced in direct impact point of SR are trapped by magnetic field lines, and do not contribute significantly to multipacting
 - Depend on SR energy, angle of incidence, beam screen surface properties
 - Needs to be experimentally determined
 - 2. Secondary electron emission¹

Build-up simulations

- Simple model for photoelectron emission determined by two parameters:
 - Photoelectron yield: Y $(N_{pe} = N_{v} * Y)$
 - Fraction of photoelectrons produced by scattered photons: R

Electrons from direct SR photons

- $N_d = N_{pe}^*(1-R)$
- Contribute to build-up mainly in field-free regions

$\begin{array}{c} R_{PE}cos\theta_{PE} \\ R_{PE}sin\theta_{PE} \end{array}$

Electrons from scattered photons

- $N_{rf} = N_{pe} * R$
- Main contribution to build-up in magnetic fields

Effect of photoelectrons on build-up

Heat load for 50 TeV 25 ns beam in Dipole magnet, scan over SEY and R,Y

Build-up in different arc components

Central electron density for 50 TeV 25 ns beam, scan over SEY and R,Y

Central electron densities along FODO cell

• Central electron density, scaled to fraction of element in FODO cell, 50 TeV 25 ns

- Instability threshold estimate $\rho \sim 5 \times 10^{11} / \text{m}^3$ (for dipole)
- Length of arc elements
 - FODO: 208.14 m, Dipole: 170.40 m, Drift: 26.40 m, Quadrupole: 10.34 m

Summary

- Build-up studies
 - Compared to the LHC with 25 ns beam, the situation seems a little bit worse
 - Similarly to LHC, the component with the worst behaviour is the quadrupole
 - Drift spaces are most sensitive to the photoelectron yield
 - The 5ns beam is worse than 25 ns, but less sensitive to the photoelectron yield
- Instability
 - Threshold for instability $\rho \sim 5 \times 10^{11} / \text{m}^3$ (for dipole)
 - Central electron densities in dipoles above or below threshold depending on SEY, Y, R
 - Central density in quadrupoles worryingly high
 - In LHC instability threshold for quadrupoles is lower than for dipoles

Further studies

- Refine studies on LHC type beam screen
 - Study electron cloud build-up using accurate boundary
 - Cross-check of codes between KEK and CERN
 - Instability thresholds for all components
 - Details of instability
 - Better input for build-up simulations may play bigger role
- Intermediate bunch spacings
 - 12.5 ns?
- Study beam screen with SR chamber
 - Requires detailed knowledge on where photoelectrons will be produced
- Electron cloud in injectors

R. Kersevan

