FROM RESEARCH TO INDUSTRY

WP2: SUMMARY

EuroCirCol kick-off meeting 3-4 June 2015 | Antoine CHANCE

TECHNICAL WP2 MEETING WEDNESDAY JUNE 3, 2015

- 14:00 15:30 Work for the Extended Straight Section
 - **14:00** Welcome (Antoine CHANCE, CEA)
 - 14:15 Collimation (Maria FIASCARIS, CERN)
 - 14:30 Review on the collimation optics (Antoine LACHAIZE, IPNO)
 - 14:45 Extraction section optics (Wolfgang BARTMANN, CERN)
 - __ 15:00 Discussions
- 16:00 17:30 Common session, basic parameters
 - 16:00 Status and needs for the dynamic aperture calculations (Barbara DALENA, CEA)
 - 16:20 WP3 (Experimental Insertion Region Design)
 - 16:40 WP5 (High Field Accelerator Magnet Design)
- 18h30 Welcome drink at the restaurant 1 (Glass box)

TECHNICAL WP2 MEETING THURSDAY JUNE 4, 2015

- 09:00 10:30 Common session, WP2 WP4
 - 09:00 Aperture definition of the beam pipes (TBD)
 - 09:20 Electron cloud status (Lotta METHER, CERN)
 - 09:40 Impedance status (Oliver BOINE-FRANKENHEIM, TUD)
 - 10:00 Discussions
- 11:00 12:30 Common session, WP2 WP3
 - 11:00 Status of the IR optics (TBD)
 - 11:20 Collimation in the IR (TBD)
 - 11:40 Interface between the DIS and the IR (Antoine CHANCE, CEA)
 - 12:00 Discussions
- 14:00 15:30 WP2, 2nd session
 - 14:00 Status and plans of the arc and of the optics integration (Antoine CHANCE, CEA)
 - 14:20 Work repartition
 - 15:00 Tentative planning
- 16:00 17:30 Plenary discussion
 - **16:00** WP2 summary
 - **16:15** WP3 summary
 - **1**6:30 WP4 summary
 - **16:45** WP5 summary

TASK 2.2 ARC OPTICS STATUS

- Lattice integration similar to what was presented in FCC week 2015
 - Realisation of the arc cells with some input parameters.
 - Realisation of the optics of the whole machine with the existing lattice files.
 - The naming convention is under application.
- Extraction optics: already 3 options. Lattice files already existing. Some refinement is nder study. These lattices are already matched to the arc opticla functions.
- Some second order schemes are under tudy to correct the chromaticity.
 - The first results are promising with small variation of the betatron functions with momentum.
 - More investigation is needed.

EXTRACTION SECTION STATUS3 CONCEPTS

- LHC scaled
- SSC like
- Asymmetric

Courtesy: Wolfgang BARTMANN

TASK 2.2 ARC OPTICS WORKING PLAN

- For September 2015:
 - Checking that the element names are conform to the naming convention.
 - Adding the dipole and multipole correctors (setupole and decapole to correct. the b3 and b5 components in the dipoles) in the lattice.
 - Adding some methods to adjust the global tune.
 - Matching the Qpoles of the arcs.
 - Using a dedicated section.
- For December 2015:
 - Integrating the collimation lattice files (momentum collimation).
 - Integrating a first aperture model (MAD-X model).
 - Making the first calculations for obit correction.
 - Refining the chromaticity correction scheme.
 - Introducing the the coupling correctors.

TASK 2.3: DYNAMIC APERTURE

Arc dipole's field quality

- First table for dipole's multipole errors provided (E. Todesco FCC-hh design meeting 28/05/2015)
- Needs:
 - full integration of insertion optics and trims for total tune?
 - will assume LHC collision tune, which seems a good point for beam-beam (X. Buffat FCC-hh design meeting 28/05/2015)
 - what about quadrupole field quality?
- provide first estimate of impact of dipole's errors for September
 - ⇒ no magnets mis-alignment and no multipole correction considered (? see next slide)

Average							
				Uncertainty		Randon	
	Moonad	Injection	High Field	Injection	High Field	Injection	High Field
	2.	0.000	0.000	0.484	0.484	0.484	0.484
١	3	-5.000	29,000	0.781	0.781	0.780	0.781
	4	0.000	0.000	0.068	0.065	0.085	0.068
	5	-1.000	-1.500	0.074	0.074	0.074	0.074
	6	0.000	0.000	0.009	0.009	0.009	0.009
	7	-0.500	1.900	0.016	0.006	0.006	0.616
	5	0.000	0.000	0.000	0.000	0.000	0.000
	9	-0.100	0.050	0.002	0.002	0.002	0.002
	10	0.000	0.000	0.000	0.000	0.000	0.000
	11	0.000	0.000	0.000	0.000	0.000	0.000
	12	0.000	0.000	0.000	0.000	0.000	0.000
	13	0.000	0.000	0.000	0.000	0.000	0.000
	14	0.000	0.000	0.000	0.000	0.000	0.000
	15	0.000	0.000	0.000	0.000	0.000	0.000
	Sterv						
	2	0.000	0.000	1.108	1.108	1.108	1.108
	3	0.000	0.000	0.256	0.255	0.256	0.256
	4	0.000	0.000	0.252	0.252	0.252	0.252
	5	0.000	0.000	0.050	0.050	0.050	0.050
	6-	0.000	0.000	0.040	0.040	0.040	0.040
	7	0.000	0.000	0.007	0.007	0.007	0.007
	5	0.000	0.000	0.007	0.007	0.007	0.007
	9	0.000	0.000	0.002	0.002	0.002	0.002
	10	0.000	0.000	0.000	0.001	0.000	0.000
	11	0.000	0.000	0.000	0.000	0.000	0.000
	12	0.000	0.000	0.000	0.000	0.000	0.000
	13	0.000	0.000	0.000	0.000	0.000	0.000
	14	0.000	0.000	0.000	0.000	0.000	0.000
	15	0.000	0.000	0.000	0.000	0.000	0.000

Personal reservoir

TASK 2.3: DIPOLE APERTURE

Impact of IR field quality

To be coordinated with WP3

- Definition of lattices to be studied: nominal, ultimate, flat, injection...
- Integration of the different lattices
- Study the impact of interaction region magnets w or w/o arcs errors?
- IR insertion at the injection energy.
- What about inner triplet fringe fields?

TASK 2.3: DIPOLE APERTURE

Conclusion

- Tools for FCC-hh Dynamics Aperture calculation have been developed (makethin.madx) and adapted starting from the (HL-)LHC ones.
- Further development and optimization possible and needed...
- Needs:
 - Optics for the different specific studies (injection,)
 - Trims for tune scan
 - Local correctors for b3
 - ...

TASK 2.4: SINGLE BEAM INSTABILITY

Comparison with round pipe impedance → Horizontal

Courtesy: Uwe NIEDERMYER

TASK 2.4: SINGLE BEAM INSTABILITY

Coupled bunch resistive instability

Courtesy: Uwe NIEDERMYER

Most critical at injection due to less stiff beam!

Pipe only, solid Cu 50K E=3TeV

Growth rate by factor 1.6 higher for 80 um coating

Required thickness for "thick wall" 150 um for 50K 450 um for 140K

TASK 2.4: SINGLE BEAM STABILITY

Conclusion

Courtesy: Uwe NIEDERMYER

- FCC-hh already on the edge of stability only with resistive pipe
- 50 turns feedback possible but maybe insufficient
- 10 turns feedback possible?
- Kickers not yet considered
- Landau damping and Octupoles not yet considered
- Impedance should play an important role in collimator design

Electron cloud studies so far

Build up (CERN)

- Simulation studies
- Initial estimates for LHC-type beam screen
 - · Dipole, quadrupole, drift
 - 25 ns and 5 ns beam
- Estimated
 - Threshold SEY for multipacting
 - Heat loads on beam screen
 - · Electron density around beam
- Parameter scans

Courtesy: Lotta METHER

Instabilities (KEK)

- Simulations and analytical estimates for single bunch instability
- · LHC-type beam screen
 - Dipole
 - 25 ns and 5 ns beam
- Estimated
 - Threshold electron densities for instability

Central electron densities along FODO cell

Courtesy: Lotta METHER

Central electron density, scaled to fraction of element in FODO cell, 50 TeV 25 ns

- Instability threshold estimate ρ ~ 5x10¹¹/m³ (for dipole)
- Length of arc elements
 - FODO: 208.14 m, Dipole: 170.40 m, Drift: 26.40 m, Quadrupole: 10.34 m

Further studies

Courtesy: Lotta METHER

- · Refine studies on LHC type beam screen
 - · Study electron cloud build-up using accurate boundary
 - Cross-check of codes between KEK and CERN
 - Instability thresholds for all components
 - Details of instability
 - Better input for build-up simulations may play bigger role
- Intermediate bunch spacings
 - 12.5 ns?
- Study beam screen with SR chamber
 - Requires detailed knowledge on where photoelectrons will be produced
- Electron cloud in injectors

R. Kersevan

- Risk: a lack of people (12 person.months from KEK and less from CERN).
- ⇒ More people needed
- September 2015: meeting beween Task 2.4 and 2.5
- Strong synergy between both expertises

Electron Cloud effects

Electron clouds lead to

- Tune shift / spread
- · Synchronous phase shift
- Instabilities

Difference to LHC

- Syncr. Rad.
- Asymmetry
- Small aperture

- 3D and 2D particle in cell codes for electron cloud simulations
- community supported beam tracking codes (e.g. PyOrbit)
- working on coupling the electron cloud simulations to the beam tracking including impedances.

04 June 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 19

TASK 2.6: DEVELOP OPTICS CONCEPT FOR COLLIMATION SYSTEMS

Where we are

Baseline available for a first FCC betatron collimation layout, based on a scaled-up version of the present system

- Standard optics for multi-stage cleaning
- Beta functions scaled to have similar collimator gaps as in the LHC
 - → push until later technological developments beyond present state-of-the-art
- Initially, keep current collimation system layout (same number of collimators, positioned at same phase advance, based on C-reinforced-C material for primary and secondary stages)
 - → to be optimized later (more collimators for secondary and tertiary stages, new materials...)

Secondary collimators must be placed at optimum phase locations to catch secondary halo

see Phys. Rev. Spec.Top.Accel. Beams 1 (1998) 081001

Dedicated insertion for off-momentum cleaning (yet to be implemented)

TASK 2.6: DEVELOP OPTICS CONCEPT FOR COLLIMATION SYSTEMS

DS collimators in FCC

- Main cleaning limitation of current system: critical losses in the DS after the betatron cleaning
- Present system: make space for two room temperature collimators close to first dipole where dispersion starts growing (one I 5m long dipole replaced with two 5.5m long I IT dipoles)
- We run simulations with one or two DS collimators in FCC layout in cells 8(9), 10(11)
- Two DS collimators provide good cleaning of offmomentum particles

TASK 2.6: DEVELOP OPTICS CONCEPT FOR COLLIMATION SYSTEMS

- Development of an aperture model and define baseline collimator settings Oct. 2015 (CERN)
- Define specifications for momentum cleaning soon (July 2015 ?)
- Decision on lattice layout Sept. 2015
- Optics for momentum cleaning Sept. 2015 (IPNO)
- Design of dispersion suppressor regions including TCLD collimators Sept. 2015 (CERN)
- Integration of colliation optics lattice Oct. 2015 (CEA)
- Performance evaluation with first collimation inefficiency tracking- end of 2015 (LAL)
- →input for impedance evaluation and HW design
- **EuroCirCol WP2 contribution:** optics design for collimation

HIRING POSITIONS

CEA post-doctoral position for task 2.2 and task 2.3 3 candidates under review next week beam dynamics

multi-turn tracking

(MAD-X expertise will be very appreciated)

CNRS post-doctoral position for task 2.6:

INSPIRE link: https://inspirehep.net/record/1374276

Experiment: Future Circular Collider - EurCirCol Design Study

Deadline: 2015-07-20

Position: Post-doctoral position in Accelerator Physics

Topic: Performance Evaluation of the Future Circular Collider hadron

beam collimation system

