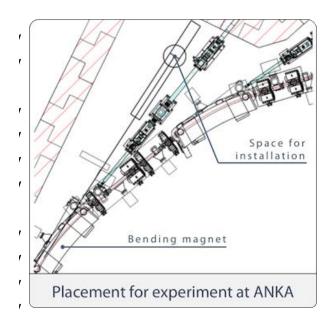


WP4 Cryogenic Beam Vacuum System Conception

Summary

Francis Perez

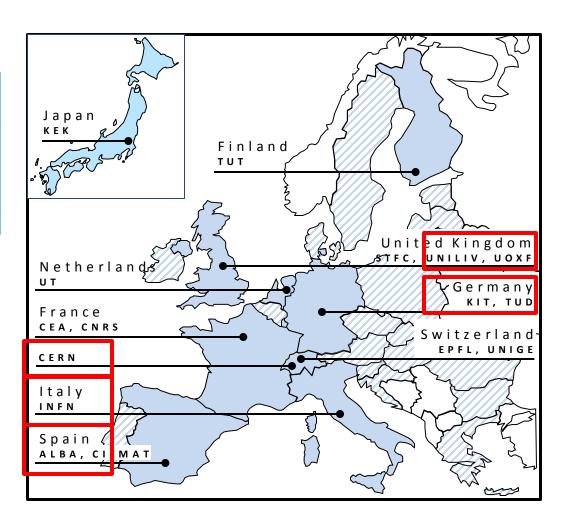


Objectives

To develop the technical design concept for the cryogenic vacuum beam pipe, with constrains:

- Beam screen
- Cryogenics
- Magnet core bore

To test a beam screen prototype in the ANKA light source with similar synchrotron light conditions



Team

CERN	IEIO
KIT	Germany
INFN	Italy
ALBA	Spain
CIEMAT	Spain
STFC	United Kingdom

Man power, hardware cost is not included in EuroCirCol

Tasks

- **Task 4.1: Work Package Coordination**
- Task 4.2: Study beam induced vacuum effects
- Task 4.3: Mitigate beam induced vacuum effects
- Task 4.4: Study vacuum stability at cryogenic temperature
- Task 4.5: Develop conceptual design for cryogenic beam vacuum system
- Task 4.6: Measurements on cryogenic beam vacuum system prototype

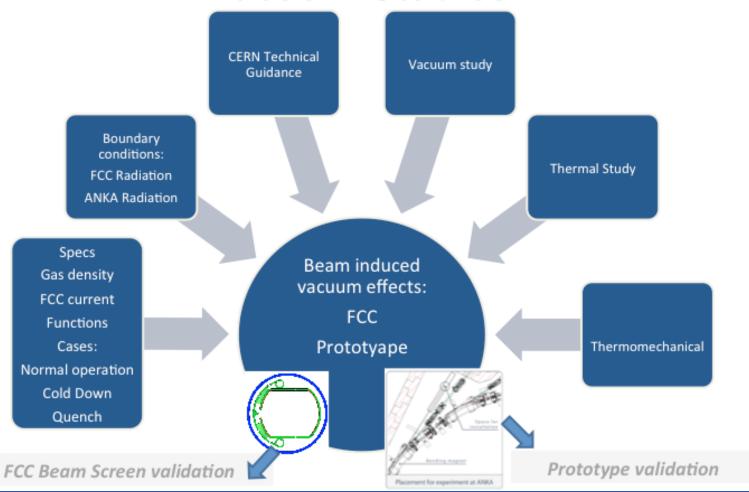
Task 4.1: Work Package Coordination (ALBA)

ALBA with the assistance of CERN coordinates the work of all other tasks of this work package to ensure consistency of the work according to the project plan and to coordinate the WP technical and scientific scope with the tasks carried out by the other WPs.

Video meeting each 2 months

On person meeting each 6 months

week before the FCC Week


Specific Meetings when required

Task 4.2: Study beam induced vacuum effects (ALBA, CERN)

WP4 Vacuum Studies

Task 4.3: Mitigate beam induced vacuum effects (STFC, CERN)

Internally coated

with amorphous
carbon

~2.2 m, ID 67 beam

STFC will study different coatings to mitigate beam induc with amorphous instabilities

Compatibility of these coatings with cryogenics temperatures has to be demonstrated, in particular sticking and flaking of coatings after seve and warm up cycles.

Tests Laser Surface Treatment

- Prototype samples of SS+Cu 150-300 um

Investigate other coatings:

- NEG, Carbon ... coatings

Task 4.4: Study vacuum stability at cryogenic temperature (INFN, CERN)

INFN Frascati will determine vacuum stability and adsorption isotherms at different cryogenic beam screen operating temperature ranges.

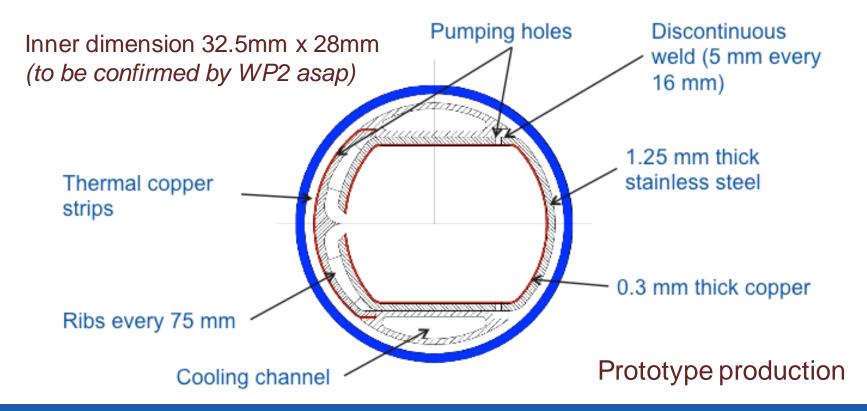
It will perform complementary studies on beam induced stimulated desorption phenomena by photons, electrons and ions.

Absortion isotherms

- Validation of temperature window: 20-80 K
- Cryoabsortion surface

PSD + PEY (at room temp) (in relation with task 4.6) Photon reflectivity (in relation with task 4.6)

- Synchrotron Radiation in grazing incidence PSD + PEY at LN2 (in relation with task 4.6)


Task 4.5: Develop conceptual design for cryogenic beam vacuum system (CERN, CIEMAT)

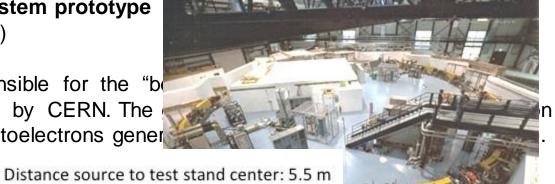
Beam Screen with absorber

Last version under study

Coil diameter 50 mm (from WP5)

in

Task 4.6: Measurements on cryogenic


beam vacuum system prototype

(**KIT**, INFN, CERN)

KIT will be responsible for the "books and the books are the "books are the books are prototype supplied by CERN. The heat loads and photoelectrons gener

> Valve Absorber

> > Pump

COLDEX

un radiation.

DLDEX carried out by and perform the

Design to be started immediately

Does it fit, 2 m long beam screen Front end, Pumps, instrumentation,...

Existing Beam Line

Beam screen mechanical design and prototyping CIEMAT – CERN

Arc design and lattice integration (WP2)

Pressure profiles and stability
ALBA – INFN – CERN

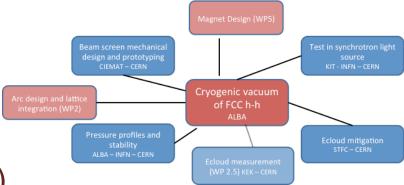
Cryogenic vacuum of FCC h-h
ALBA

Ecloud mitigation STFC – CERN

Ecloud measurement (WP 2.5) KEK – CERN

WP2 + WP4 (close follow needed)

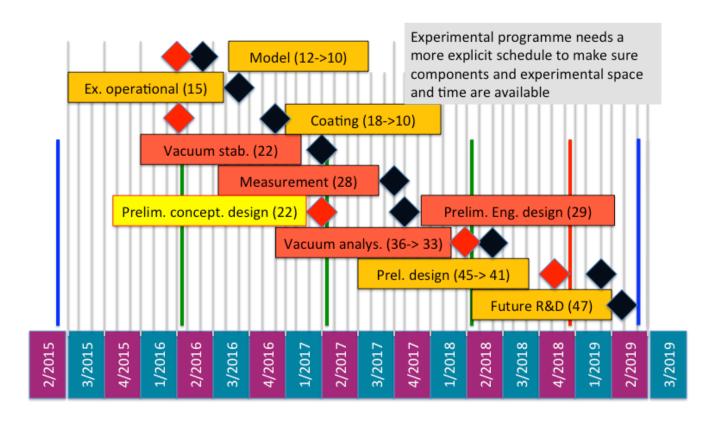
- Dimensions agree
 Injection concern
 Vertical orbit sensitivity
- e-cloud


Proper data for PEY & reflectivity for simulation

- Input needed for Gas density/lifetime
- Impedance

Need of real Cu data for simulation

WP5 + WP4 (close follow needed)


- Coil inner diameter agree (50+- 2 mm)
- Baseline temperature for WP5 is 4.2K but for WP4 is 1.9K
- Beam shall pass through the center of the magnets
- Test of quench feasible with 2 T room temperature pulsed magnet and beam screen cryo-cooled.

Re-schedule needed...

Careful analysis in following weeks

