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Kalray OpenCL 1.2 
Training
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Scope

● Introduction to the Kalray OpenCL support for the 
Kalray MPPA architecture

● Practical exercises using the Kalray OpenCL API
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OpenCL

● Open standard for parallel programming of 
heterogeneous systems : 
https://www.khronos.org/opencl/

https://www.khronos.org/opencl/
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Overview

● Kalray OpenCL for MPPA devices is a subset of 
the OpenCL 1.2 framework

● MPPA device is an accelerator device

● Both host runtime and device support

● Kalray OpenCL programs can be executed on 
both simulator and hardware 
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The Kalray OpenCL Model

● Platform Model :
● 16 compute units of 16 processing elements

● 1 MPPA board is 1 compute device
● Work-groups executed on compute units
● Work-items executed on processing elements

Figure : OpenCL platform model with MPPA mapping



Kalray confidential 6© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Model

● Memory Model :
● Private data (__private) on PE's stack
● Local data (__local) in buffer shared between Pes
● Global data (__global) in DDR memory and accessed using the 

DSM system  

Figure : OpenCL memory model for the MPPA architecture
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The Kalray OpenCL Implementation

● OpenCL Host support :
● Based on the POCL project
● Functionalities supported by the Kalray OpenCL API :

● Buffers and sub-buffers
● Out-of-Order execution for command queues
● Events, wait lists
● NDRange, Task and Native kernels
● C++ OpenCL API Wrapper

● Kernels have to be written in plain C (C11)
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The Kalray OpenCL Implementation

● Memory space keywords :
● __local, __global, and __constant are supported if 

placed in the kernel parameters declaration and 
ignored otherwise

● __global buffers are allocated in the DDR. This 
memory is currently limited to 1024MB

● __constant is identical to __global
● __local buffers are allocated in the shared memory 

(SMEM) with a total maximum of 128kB
● __private is not yet supported. However, any variable 

declared on the stack (ie in the body of a function) will 
have private visibility for the work-item. The maximum 
amount of private memory (ie stack size) is 4kB
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Memory Space Keywords : An 
Example

__kernel void my_kernel(__global void *arg1, /* Allowed */
 __local void *arg2) /* Allowed */

{
__local int var1[10]; /* Ignored,

 * visibility defaults to private */
__private int var2; /* Ignored,

 * visibility defaults to private */
char var3[4*1024]; /* Harmful, Stack overflow

 * Stack size is only 4K */
}
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The Kalray OpenCL Implementation

● Memory accesses :
● Distributed Shared Memory (DSM) system is used
● When a buffer is accessed, a page (8kB by default) of 

data is fetched from the DDR and stored in the SMEM
● Each PE can store roughly 10 pages in the SMEM
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The Kalray OpenCL Implementation

● Tips to harness the full performance of the 
MPPA :
● Better if each work-item accesses different pages
● Use the OpenCL builtin prefetch to speedup the 

fetch of a page of data
● Enable Out-of-Order (OoO) execution
● Run multiple kernels concurrently by enabling OoO 

execution and by carefully sizing work-group 
dimensions
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Out-of-Order Execution

● Multiple commands can be executed simultaneously 
by using OpenCL events to describe dependencies
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Task Kernel Support

● To achieve task parallelism with several kernels

● Task kernels are run on only 1 PE

● Run kernels concurrently by enabling out-of-
order execution so that they run on each cluster
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NDRange Kernel Support

● Up to 3 dimensions for NDRange kernels supported

● The number of work-groups is practically unlimited
● If using more than 16 work-groups, the first dimension will be 

dispatched over the 16 compute units
● Eg : if work-group dimension is (gx, gy, gz) the compute unit n 

will execute the range (gx * n/16, 0, 0) to ((gx/16 ) * (n+1) - 1, gy-
1, gz-1)

● The 1st dimension should be a multiple of 16, while the 2nd and 3rd 
dimensions have no constraints

● Work items are limited to 16 per work-group
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The OpenCL-C Language

● OpenCL-C not yet supported
● A subset is available

● Some builtins
● Partially supported OpenCL-C types

● Subset of ISO C99 :
● No function pointers
● No variable length arrays
● No recursion

● Superset of ISO C99 :
● Work-items and work-groups 

(get_global_id(), etc)
● Vector support
● Synchronisation
● Address space qualifiers

void trad_mul(int n, 
const float *a, 
const float *b, 
float *c) {

for (int i=0; i<n; i++) {
c[i] = a[i] * b[i];

}
}

__kernel void opencl_mul(__global const float *a, 
__global const float *b, 
__global float *c) {

int id = get_global_id(0);

c[id] = a[id] * b[id];
} // execute over “n” work-items
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The OpenCL Kernel Program

● Written inlined within the host application code 
OR

● Separately in a .cl file and loaded at runtime from 
the host application

● The keyword __kernel is used to declare a kernel
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Developing OpenCL Programs
● Set-up OpenCL on the host :

● #include <CL/cl_kalray.h>
● Create a device context

● Specifies the OpenCL environment (GPU(s), MPPA(s), ...)   

● Create a program
● Source compiled for specific context during execution of Host application

● Create a kernel
● Provides an access point from the Host to the OpenCL functions in the program 

● Create OpenCL buffers
● Allocation of global memory

● Program the body of the application :
● Copy data between Host and global memory
● Execute kernels on work-items

● Exit sequence :
● Release buffers, kernel, program and context
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OpenCL Objects

● cl_platform_id

● cl_device_id

● cl_context

● cl_command_queue

● cl_program

● cl_kernel

● cl_mem

● cl_event
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Synchronization

● Work items in a single work group
● Barrier (encountered by all work-items in the work-

group)

● Commands enqueued to command-queues in a 
single context
● Command-queue barrier
● Waiting on an event
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How To Compile and Run

● Use Kalray Makefile (Makefile.opencl)
● include $K1_TOOLCHAIN_DIR)/share/make/Makefile.opencl

● host_ndrange-srcs

● To run using simulator :
● k1-pciesim-runner <ocl_exec>

● To run on the HW :
● <ocl_exec>

● To trace :
● k1-opencl-trace -- <ocl_exec>
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Example 1 : vector_add  

● Source code : vector_add

● Exercise : 
● Compile and run the code (make run_hw target)
● Run the make run_hw_trace target to trace the 

application
● change the parameters for the  

clEnqueueNDRangeKernel function to only use 1 
compute-unit (1 cluster)
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Two Kernels – In-order execution

Write buffer
A1

Write buffer
B1

Kernel 1
Read buffer

C1
Write buffer

A2
Write buffer

B2
Kernel 2

Read buffer
C2

Implicit dependency
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Example 2 : 2 Kernels in-order

● Exercise : 
● Add code to call the kernel again. Make sure you set 

the input buffer to the output of the previous kernel
● Set the command queue parameter to run the kernels 

in-order (i.e. Do not change the default)
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Two Kernels – Out-of-order execution
using clFinish()

Write buffer
A1

Write buffer
B1

Kernel 1
Read buffer

C1
Write buffer

A2
Write buffer

B2
Kernel 2

Read buffer
C2

Explicit barrier

Implicit dependency 
(blocking function)
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Example 3 : 2 Kernels out-of-order

● Exercise : 
● Set the command queue parameter to run the kernels 

out-of-order
● Fix the bug that appears
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Two Kernels – Out-of-order execution
using events

Write buffer
A1

Write buffer
B1

Kernel 1
Read buffer

C1
Write buffer

A2
Write buffer

B2
Kernel 2

Read buffer
C2

Implicit dependency
(blocking function)

Explicit dependency
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Example 4 : 2 Kernels out-of-order

● Exercise : 
● Set the command queue parameter to run the kernels 

out-of-order using events this time
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