
Kalray confidential 1© 2008-2015 – Kalray SA – All rights reserved.

Kalray OpenCL 1.2
Training

Kalray confidential 2© 2008-2015 – Kalray SA – All rights reserved.

Scope

● Introduction to the Kalray OpenCL support for the
Kalray MPPA architecture

● Practical exercises using the Kalray OpenCL API

Kalray confidential 3© 2008-2015 – Kalray SA – All rights reserved.

OpenCL

● Open standard for parallel programming of
heterogeneous systems :
https://www.khronos.org/opencl/

https://www.khronos.org/opencl/

Kalray confidential 4© 2008-2015 – Kalray SA – All rights reserved.

Overview

● Kalray OpenCL for MPPA devices is a subset of
the OpenCL 1.2 framework

● MPPA device is an accelerator device

● Both host runtime and device support

● Kalray OpenCL programs can be executed on
both simulator and hardware

Kalray confidential 5© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Model

● Platform Model :
● 16 compute units of 16 processing elements

● 1 MPPA board is 1 compute device
● Work-groups executed on compute units
● Work-items executed on processing elements

Figure : OpenCL platform model with MPPA mapping

Kalray confidential 6© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Model

● Memory Model :
● Private data (__private) on PE's stack
● Local data (__local) in buffer shared between Pes
● Global data (__global) in DDR memory and accessed using the

DSM system

Figure : OpenCL memory model for the MPPA architecture

Kalray confidential 7© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Implementation

● OpenCL Host support :
● Based on the POCL project
● Functionalities supported by the Kalray OpenCL API :

● Buffers and sub-buffers
● Out-of-Order execution for command queues
● Events, wait lists
● NDRange, Task and Native kernels
● C++ OpenCL API Wrapper

● Kernels have to be written in plain C (C11)

Kalray confidential 8© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Implementation

● Memory space keywords :
● __local, __global, and __constant are supported if

placed in the kernel parameters declaration and
ignored otherwise

● __global buffers are allocated in the DDR. This
memory is currently limited to 1024MB

● __constant is identical to __global
● __local buffers are allocated in the shared memory

(SMEM) with a total maximum of 128kB
● __private is not yet supported. However, any variable

declared on the stack (ie in the body of a function) will
have private visibility for the work-item. The maximum
amount of private memory (ie stack size) is 4kB

Kalray confidential 9© 2008-2015 – Kalray SA – All rights reserved.

Memory Space Keywords : An
Example

__kernel void my_kernel(__global void *arg1, /* Allowed */
 __local void *arg2) /* Allowed */

{
__local int var1[10]; /* Ignored,

 * visibility defaults to private */
__private int var2; /* Ignored,

 * visibility defaults to private */
char var3[4*1024]; /* Harmful, Stack overflow

 * Stack size is only 4K */
}

Kalray confidential 10© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Implementation

● Memory accesses :
● Distributed Shared Memory (DSM) system is used
● When a buffer is accessed, a page (8kB by default) of

data is fetched from the DDR and stored in the SMEM
● Each PE can store roughly 10 pages in the SMEM

Kalray confidential 11© 2008-2015 – Kalray SA – All rights reserved.

The Kalray OpenCL Implementation

● Tips to harness the full performance of the
MPPA :
● Better if each work-item accesses different pages
● Use the OpenCL builtin prefetch to speedup the

fetch of a page of data
● Enable Out-of-Order (OoO) execution
● Run multiple kernels concurrently by enabling OoO

execution and by carefully sizing work-group
dimensions

Kalray confidential 12© 2008-2015 – Kalray SA – All rights reserved.

Out-of-Order Execution

● Multiple commands can be executed simultaneously
by using OpenCL events to describe dependencies

Kalray confidential 13© 2008-2015 – Kalray SA – All rights reserved.

Task Kernel Support

● To achieve task parallelism with several kernels

● Task kernels are run on only 1 PE

● Run kernels concurrently by enabling out-of-
order execution so that they run on each cluster

Kalray confidential 14© 2008-2015 – Kalray SA – All rights reserved.

NDRange Kernel Support

● Up to 3 dimensions for NDRange kernels supported

● The number of work-groups is practically unlimited
● If using more than 16 work-groups, the first dimension will be

dispatched over the 16 compute units
● Eg : if work-group dimension is (gx, gy, gz) the compute unit n

will execute the range (gx * n/16, 0, 0) to ((gx/16) * (n+1) - 1, gy-
1, gz-1)

● The 1st dimension should be a multiple of 16, while the 2nd and 3rd
dimensions have no constraints

● Work items are limited to 16 per work-group

Kalray confidential 15© 2008-2015 – Kalray SA – All rights reserved.

The OpenCL-C Language

● OpenCL-C not yet supported
● A subset is available

● Some builtins
● Partially supported OpenCL-C types

● Subset of ISO C99 :
● No function pointers
● No variable length arrays
● No recursion

● Superset of ISO C99 :
● Work-items and work-groups

(get_global_id(), etc)
● Vector support
● Synchronisation
● Address space qualifiers

void trad_mul(int n,
const float *a,
const float *b,
float *c) {

for (int i=0; i<n; i++) {
c[i] = a[i] * b[i];

}
}

__kernel void opencl_mul(__global const float *a,
__global const float *b,
__global float *c) {

int id = get_global_id(0);

c[id] = a[id] * b[id];
} // execute over “n” work-items

Kalray confidential 16© 2008-2015 – Kalray SA – All rights reserved.

The OpenCL Kernel Program

● Written inlined within the host application code
OR

● Separately in a .cl file and loaded at runtime from
the host application

● The keyword __kernel is used to declare a kernel

Kalray confidential 17© 2008-2015 – Kalray SA – All rights reserved.

Developing OpenCL Programs
● Set-up OpenCL on the host :

● #include <CL/cl_kalray.h>
● Create a device context

● Specifies the OpenCL environment (GPU(s), MPPA(s), ...)

● Create a program
● Source compiled for specific context during execution of Host application

● Create a kernel
● Provides an access point from the Host to the OpenCL functions in the program

● Create OpenCL buffers
● Allocation of global memory

● Program the body of the application :
● Copy data between Host and global memory
● Execute kernels on work-items

● Exit sequence :
● Release buffers, kernel, program and context

Kalray confidential 18© 2008-2015 – Kalray SA – All rights reserved.

OpenCL Objects

● cl_platform_id

● cl_device_id

● cl_context

● cl_command_queue

● cl_program

● cl_kernel

● cl_mem

● cl_event

Kalray confidential 19© 2008-2015 – Kalray SA – All rights reserved.

Synchronization

● Work items in a single work group
● Barrier (encountered by all work-items in the work-

group)

● Commands enqueued to command-queues in a
single context
● Command-queue barrier
● Waiting on an event

Kalray confidential 20© 2008-2015 – Kalray SA – All rights reserved.

How To Compile and Run

● Use Kalray Makefile (Makefile.opencl)
● include $K1_TOOLCHAIN_DIR)/share/make/Makefile.opencl

● host_ndrange-srcs

● To run using simulator :
● k1-pciesim-runner <ocl_exec>

● To run on the HW :
● <ocl_exec>

● To trace :
● k1-opencl-trace -- <ocl_exec>

Kalray confidential 21© 2008-2015 – Kalray SA – All rights reserved.

Example 1 : vector_add

● Source code : vector_add

● Exercise :
● Compile and run the code (make run_hw target)
● Run the make run_hw_trace target to trace the

application
● change the parameters for the

clEnqueueNDRangeKernel function to only use 1
compute-unit (1 cluster)

Kalray confidential 22© 2008-2015 – Kalray SA – All rights reserved.

Two Kernels – In-order execution

Write buffer
A1

Write buffer
B1

Kernel 1
Read buffer

C1
Write buffer

A2
Write buffer

B2
Kernel 2

Read buffer
C2

Implicit dependency

Kalray confidential 23© 2008-2015 – Kalray SA – All rights reserved.

Example 2 : 2 Kernels in-order

● Exercise :
● Add code to call the kernel again. Make sure you set

the input buffer to the output of the previous kernel
● Set the command queue parameter to run the kernels

in-order (i.e. Do not change the default)

Kalray confidential 24© 2008-2015 – Kalray SA – All rights reserved.

Two Kernels – Out-of-order execution
using clFinish()

Write buffer
A1

Write buffer
B1

Kernel 1
Read buffer

C1
Write buffer

A2
Write buffer

B2
Kernel 2

Read buffer
C2

Explicit barrier

Implicit dependency
(blocking function)

Kalray confidential 25© 2008-2015 – Kalray SA – All rights reserved.

Example 3 : 2 Kernels out-of-order

● Exercise :
● Set the command queue parameter to run the kernels

out-of-order
● Fix the bug that appears

Kalray confidential 26© 2008-2015 – Kalray SA – All rights reserved.

Two Kernels – Out-of-order execution
using events

Write buffer
A1

Write buffer
B1

Kernel 1
Read buffer

C1
Write buffer

A2
Write buffer

B2
Kernel 2

Read buffer
C2

Implicit dependency
(blocking function)

Explicit dependency

Kalray confidential 27© 2008-2015 – Kalray SA – All rights reserved.

Example 4 : 2 Kernels out-of-order

● Exercise :
● Set the command queue parameter to run the kernels

out-of-order using events this time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

