
Kalray’s MPPA: Mathematical
library and low level arithmetic

optimizations

Kalray training at CERN, June 3rd , Nicolas Brunie

1 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

1 Introduction

2 Overview of K1 arithmetic operation
Integer arithmetic
Floating-point arithmetic

3 Software for arithmetic
Mathematical library

4 Practical Exercises
Pre-requesites
Using mathematical library
Assembly coding for K1

5 Implementing mathematical functions

2 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

The objectives of this training are:

Show you Kalray core arithmetic capabilities

Teach you how to use basic math library on Kalray processor

Teach you how to use advance function on K1

Teach you how to write low-level optimized code

3 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Introduction

Overview of arithmetic on K1

K1 core implements a 5-issue VLIW

1 FP/MAU issue

4 32-bit ALU issues

Between 1 and 4 cycles

Bypasses

64-bit Load/Store

4 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Overview of K1 arithmetic operation

K1’s Integer arithmetic

One 64-bit ALU (ADD, SUB, SHIFT, ...)

Four 32-bit ALU

Two full capabilities (ADD, SUB, SHIFT ..)
Two Reduced capabilities (ADD, SUB, LOGICAL)

One 64-bit MAU: signed, unsigned, large accumulator

Fixed-Point capabilities

Operations with carry

5 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Overview of K1 arithmetic operation

K1’s FPU Overview

4-stage main pipeline

IEEE-754 compliant

Extended capabilities (FMAWD, FDMA)

Mixed-Precision

Operations latency throughput

fp32 FADD, FSUB, FMUL 4 1

fp32→ fp64 conversions 4 1

fp32 FMA 4 1

fp64 FADD, FSUB 4 1

fp64 FMUL 5 2

FMAWD, FDMA 4 1

6 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Overview of K1 arithmetic operation

Original floating-point operations

Mixed Precision Fused Multiply-Add

Computes a× b + c with a and b fp32 and c fp64

Single rounding towards fp64

FFAMWD, FFMSWD, FFMANWD, FFMSNWD instructions

Dual Fused Multiply-Add

Computes a× c + b × d , with a, b, c and d fp32

Single rounding towards fp32 or fp64

FDMA, FDMS, FCMA, FCMS instructions

7 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Overview of K1 arithmetic operation

Floating Point Miscellaneous

FP operations in K1’s ALU:

Sign-based operations (abs, neg)

Square root and Division seed

fp64→ fp32 conversions

Rounding modes and exceptions:

4 binary fp rounding mode supported

5 exceptions

Default exception handling

8 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

1 Introduction

2 Overview of K1 arithmetic operation
Integer arithmetic
Floating-point arithmetic

3 Software for arithmetic
Mathematical library

4 Practical Exercises
Pre-requesites
Using mathematical library
Assembly coding for K1

5 Implementing mathematical functions

9 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Software for arithmetic

Overview of mathematical library

Accesscore provides GCC and libm:

GCC targets most of the operation introduced in Section 2

GCC is delivered with libgcc (e.g. divsf3, divdf3)

External library:

Newlib’s libm

Static library

Compliant with C standard

Implements the math.h API

Usual function: exp, cosf, rint...

10 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Software for arithmetic

A few optimized implementations

Kalray’s capabilities allow for efficient implementation

FMA, FDMA

Integrated conversions

Pipelined FPUs

Current state:

divsf3 and sqrtf

More to come: priority driven by customer request

11 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

1 Introduction

2 Overview of K1 arithmetic operation
Integer arithmetic
Floating-point arithmetic

3 Software for arithmetic
Mathematical library

4 Practical Exercises
Pre-requesites
Using mathematical library
Assembly coding for K1

5 Implementing mathematical functions

12 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Pre-requesites: Kalray tools

Build and link with k1-gcc

Build with make run test TEST=test name

Simulate executable with k1-cluster

Use --cycle-based to obtain better timing accuracy
Use --profile to generate execution traces

Run on hardware with k1-jtag-runner

with option --exec-file=C0:<executable>

Modify sources and Makefile, ask questions

13 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Pre-requesites: timer measures

Before optimizing code, we need a metric: timing.
How to determine code execution time ?

Traces can be used

Performance monitors are more accurate

K1 performance monitoring support:

Each K1 provides two performance monitors: PM0 and PM1

Set them to count cycle using
k1 counter enable(cindex, K1 CYCLE COUNT, 0)

Retrieve current monitor value with
k1 counter num(cindex)

14 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Quick and Dirty complex multiplication

FDMA and FCMA can be used to accelerate complex multiplication

builtin k1 fdma(a, b, c, d) = a * c + b * d

builtin k1 fdms(a, b, c, d) = a * c - b * d

builtin k1 fcma(a, b, c, d) = a * d + b * c

builtin k1 fcms(a, b, c, d) = b * c - a * d

Exercise: complex product empty

Build and Run

Open the source file

Complete the implementation of complex mult array opt

Using builtin k1 fdma, fdms, fcma, fcms

(Bonus) Develop assembly version of the function

15 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Rounding modes and exceptions

API can be found in:
k1-elf/include/HAL/machine/core/common/cpu.h

Provides R/W capabilities to Compute Status register fields

Impact hardware operations (not libm)

Exercise: rnd and exceptions

Build and Run

Open and Modify sources

Try to find simulator bugs (or at least generate a minus 0)

Rounding mode and mathematical function:

Compute Status impacts optimized routines

It does not impact most of the legacy functions

16 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Using GCC built-in arithmetic support

Exercise: example libgcc empty

Determine the options required to link with libgcc

Build and run the example

Open the source code

Explain the timing differences

17 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Using K1’s libm

Delivered with every accesscore

Linked through k1-gcc, with -lm option

Exercise: example libm empty

Try to build the example with k1-gcc

Fix the problems which arise

Build and run the example

18 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Assembly development

For the next parts of this training, we will use low-level
programming to optimize our programs and manipulate K1
arithmetic operations:

Disassemble using k1-objdump -D

Assenble using directly k1-gcc

File is divided into section (.text, .data)

GNU-asm like assembly syntax: [op] [result] = [operand list]

Instruction bundles separated by ”;;”

19 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Low-level exercise

Exercise: look at K1 assembly

Dissasemble build/example libgcc empty

Inspect the disassembled code, find the main function

Build it once again but using -S options with k1-gcc

Inspect the generated assemby code and find the call to division

20 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

What you need to know
To implement a function in assembly: You need to respect the
calling convention:

argument passing and result return interfaces

callee and caller-saved registers

stack and frame registers

Exercise: Observing the calling convention

Let us have an other look at example libgcc assembly

Find function calls

Observe manifestation of the calling convention

Our goal is not to give you a full overview, but feel free to ask
questions.

21 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Half-Packed operations

K1’s ALU and MAU implements 16-bit SIMD operations

Add, Subtract, Multiply-Accumulate

Compiler will select them (sometimes)

Exercise: compute packed array

Compile with k1-gcc -O3 -mcore=k1dp

Objdump with k1-objdump -D

Look at the generated code for compute add packed array

and compute mac packed array

What part(s) implement the arithmetic computation ?

22 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Optimizing using half-packed

Exercise: short add

Compile using k1-gcc

Open short add opt empty.S

Finish the implementation of short add opt

Compile, fix and compare

23 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Practical Exercises

Operations with carry

K1 ISA provides instruction for arithmetic with carry

Those operations can be used to accelerate multi-precision
computation

Exercise: op with carry

Compile and Run

Open large addition opt empty.S

Fill the gaps, Build, Run and Compare

24 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Implementing mathematical functions

Introduction to metalibm

Kalray is involved in the Metalibm Project

Metalibm is generator of mathematical functions

Tuned for specific architecture

Our current (on going) work is to optimize our libm

25 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Implementing mathematical functions

Using metalibm generated functions

Function generated from a private fork
Public software available at metalibm.org

Metalibm aims at generating both libm and custom functions

with hand-written level performances ...

... and much more flexibility

Exercise function bench

Open src/metalibm/bench/function bench.c

Build and Run

Enable metalibm generated implementations, run once again

Open function source files

26 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

The end.
Any questions ?

27 / 27
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

Implementing mathematical functions

Kalray’s OpenCL and libm

This training requires AccessCore 2.0

Include <math.h> into kernels

Add -lm to kernel build options

Define macros to circumvent OpenCL-C missing features

28 / 28
Kalray’s MPPA: Mathematical library and low level arithmetic optimizationsNicolas Brunie

N

	Introduction
	Overview of K1 arithmetic operation
	Integer arithmetic
	Floating-point arithmetic

	Software for arithmetic
	Mathematical library

	Practical Exercises
	Pre-requesites
	Using mathematical library
	Assembly coding for K1

	Implementing mathematical functions

