Electron-Muon Ranger (EMR) Step I Paper

François Drielsma

University of Geneva

June 4, 2015

4 日下

- 点 \sim 舌

 \sim 40

 \rightarrow \equiv \rightarrow

 QQ

Structure of the EMR Step I note and paper

- **1** Introduction
	- ► Ionization Cooling, MICE V
	- ► Purpose of the EMR \checkmark
- **2** Electron-Muon Ranger
	- Structure of the detector J
- ³ Performance in the MICE Beam
	- ► TOF selection and particle tagging
	- ► Correction for the energy loss in TOF2 and KL √
	- ► Useful variables for PID J
	- ► Efficiency of a simple test statistic \checkmark
	- ► Momentum reconstruction from the range \checkmark

4 Conclusions

 200

Beam characterisation with TOFs

The *time-of-flight* structure of a beam setting exhibits a three peak structure with the first and second peaks composed of electrons and muons, respectively

 \rightarrow Preliminary particle ID

Provided the particle mass, the TOF information allows for good momentum reconstruction between TOF1 and TOF2

 \rightarrow Momentum **before** TOF2 and KI

 Ω

Momentum loss prior to the EMR

Energy loss in TOF2

- \rightarrow ∼ 15 MeV/c loss through ionization for ultra-relativistic electrons and positrons
- $\rightarrow \sim 10$ MeV/c loss for MIP muons, 15 MeV/ c for 150 MeV/ c muons

Energy loss in KL

- \rightarrow electrons and positrons shower in the KL and multiple particles exit
- $\rightarrow 28 \pm 3$ MeV/c loss for MIP muons, stop under 120 MeV/ c

 Ω

Electron shower ToT profile (450 MeV/c $QD2$)

 QQQ

 \leftarrow

Muon decay ToT profile (250 MeV/c @TOF₂)

 $6/17$ June 4, 2015

 QQQ

EMR Paper Draft

 \leftarrow

François Drielsma (UniGe)

Definition of the Plane Density ρ_n

The plane density is defined as the percentage of the planes that record a signal on the path of the particle or its shower, i.e.

$$
\rho_p = \frac{N_x + N_y}{Z_X + Z_Y} = \frac{N}{Z_X + Z_Y} \tag{1}
$$

with N_i the number of planes hit in the iz proj. and Z_i the most downstream plane in the iz proj. N is the total amount of planes hit.

Electrons: 9 planes hit over a span of 15, $\rho_n = 60\%$;

Muons: 14 planes hit over a span of 14, $\rho_p = 100\%$ $\rho_p = 100\%$ $\rho_p = 100\%$. Ω Muon vs electron: ρ_P (normalized)

François Drielsma (UniGe)

June 4, 2015 $8/17$

Plane density: separation efficiency

 299

Spread in terms of χ^2/N in the two projections

One way to express that angular spread of an electromagnetic shower is to fit it with a line a evaluate its χ^2 normalized to the amount of hits N:

$$
\chi^2/N = \frac{1}{N} \sum_{i} \frac{(y_i - (ax_i + b))^2}{\sigma_i^2}
$$
 (2)

For a given array of hits $\left(x_i, y_i\right)$, the exact value of this parameter is expressed in term of the spread $\sigma_y^2 = E\left[(y-\overline{y})^2\right]$ as:

$$
\chi^2/N = \sigma_y^2(1-\rho^2) \tag{3}
$$

with $\rho = \text{Cov}(x, y) / \sigma_x \sigma_y$. This is exactly what we want as:

- **•** Electrons have a significant spread σ_y and the hits they produce are weakly correlated $((1-\rho^2)\!\!\rightarrow 1)$, so that $\chi^2/N \rightarrow \sigma_y^2 \gg 1$
- Muons have a small spread σ_y (centre of the detector) and are strongly correlated (line, $(1-\rho^2)\rightarrow 0)$, so that $\chi^2/N\ll 1$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Muon vs electron: χ^2/N in the two projections

 $\sim \infty$

Normalised χ^2 : separation efficiency

 QQ

Combined separation efficiency

 \curvearrowright

Definition of the Range of muons R

The range is defined as the distance the particles travels through the EMR before it stops. Given that z_N is the z coord. of the last bar hit,

$$
R = z_N \sqrt{1 + (\tan^2 \theta_x + \tan^2 \theta_y)}
$$
 (4)

François Drielsma (UniGe) **EMR Paper Draft** June 4, 2015 14 / 17

 Ω

Comparaison with the CSDA range

Uncertainty on the range reconstruction

Conclusions

EMR Paper: Status

François Drielsma (UniGe) **EMR Paper Draft** June 4, 2015 17 / 17