

MEM discussion: ATLAS $t\bar{t}(H \rightarrow b\bar{b})$ experience

010001110

Olaf Nackenhorst University of Geneva

EPJC 75 (2015) 349

1

Not a perfect world

UNIVERSITÉ DE GENÈVE

- The ideal world
 - Machine Learning (ML)
 - The underlying physics model can be learned using MC simulation
 - Matrix Element Method (MEM)
 - Describes perfectly the underlying physics of the observed data

\rightarrow A perfect ML & MEM should give you the same answer

- The real world
 - Machine Learning
 - MC simulations are not perfect, training statistic is limited
 - Input information blurred by resolution & acceptance affects, syst. uncertainties
 - Matrix Element Method
 - Computational constraints demand simplifications & approximation
 - Acceptance & combinatorial ambiguities largely affects input
 - \rightarrow Synergy of both methods still beneficial

ATLAS ttH experience

- Machine Learning (Neural Network)
 - Signal & main background (ttbb) kinematically similar
 - Difficult to find good features, selection reduces statistic
 - > 300 input variables tested, saturation ~ 10 variables
- Matrix Element Method
 - Even at LO computationally prohibitive
 - Many simplifications & approximations
 - Reduction of dimensionality $(40 \rightarrow 6)$
 - Optimization of ME calculation
 - Phase space reduction & alignment
 - Reduction of assignment permutations
 - Integration time reduction at precision costs
 - $24h \rightarrow 2 \text{ min per event}$

UNIVERSITÉ

Olaf Nackenhorst, 10.11.2015 Data Science @ LHC 2015 Workshop

Hybrid NN+MEM

Olaf Nackenhorst, 10.11.2015 Data Science @ LHC 2015 Workshop

Conclusion & Open Questions

- UNIVERSITÉ DE GENÈVE
- Both MEM & ML output contains valuable & unique information
 - Loss of information is unavoidable in both methods
- Combination of both methods natural & most complete answer
 - 16% improvement corresponds to a large amount of data (>10 fb⁻¹@8TeV = \$\$)
- Disadvantage of combination ML+MEM
 - Need to run MEM on large MC statistic (6M nominal) required for training
 - Tiny signal \rightarrow many systematic variations of background to consider
 - \rightarrow 62M total number of events \rightarrow 2M CPUh (236 CPUy) in 2 month real time
- Overcoming computational constraints
 - Further simplify model or dedicated MEM region (loss of information)
 - Highly parallelize CPU computation (challenging bookkeeping & inflexible)
 - Use GPUs instead of CPUs (limited by available GPUs)
 - Use of look-up tables (non-trivial interpolation and parametrization of PS)