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An overview of ABC

A taste of several research directions in the ABC community

Introduction

Rejection sampling and interpretation

Efficient algorithms

Post-hoc regression adjustments

Surrogate modelling approximations

Summary statistics

Model selection



Calibration

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ
which explain the data.

The Bayesian approach
is to find the posterior
distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood



Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ
unknown (cf Murray, Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t
be evaluated (unknown is subjective). I.e., if the analytic distribution
of the simulator, f (θ), run at θ is unknown.

Completely intractable models are where we need to resort to ABC
methods

Note that if the lilkelihood is unknown, then we can’t find sufficient
summary statistics of the data either.
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Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian
computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods are popular in biological disciplines. They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied

ABC methods can be crude but they have an important role to play.
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‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).
If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).



Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).

For reasons that will become clear later, we call this uniform-ABC.
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Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the field data

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians
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ABC as a probability model
W. 2008/2013

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e

where the distribution of e depends upon ρ and ε.

ABC gives ‘exact’ inference under a different model

We can show that

Proposition

If ρ(D,X ) = |D − X |, then ABC samples from the posterior distribution
of θ given D where we assume D = f (θ) + e and that

e ∼ U[−ε, ε]
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Generalized ABC (GABC)
W. 2008, Fearnhead and Prangle 2012

Generalized rejection ABC

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) w.p. πε(D|X )
maxx πε(D|x)

where πε(D|x) is a user specified acceptance kernel, i.e.,
P(accept θ|f (θ) = x).

In uniform ABC we take

πε(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ if ρ(D,X ) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.



Generalized ABC (GABC)
W. 2008, Fearnhead and Prangle 2012

Generalized rejection ABC

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) w.p. πε(D|X )
maxx πε(D|x)

where πε(D|x) is a user specified acceptance kernel, i.e.,
P(accept θ|f (θ) = x).
In uniform ABC we take

πε(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ if ρ(D,X ) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.



Generalized ABC (GABC)
W. 2008, Fearnhead and Prangle 2012

Generalized rejection ABC

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) w.p. πε(D|X )
maxx πε(D|x)

where πε(D|x) is a user specified acceptance kernel, i.e.,
P(accept θ|f (θ) = x).
In uniform ABC we take

πε(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ if ρ(D,X ) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.



Efficient Algorithms

References:

Marjoram et al. 2003

Sisson et al. 2007

Beaumont et al. 2008

Toni et al. 2009

Del Moral et al. 2011

Drovandi et al. 2011



Efficient sampling
ABCifying Monte Carlo methods

Rejection is inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to spend more time in regions
of parameter space likely to lead to accepted values.

allows us to use smaller values of ε, and hence find better
approximations

Most Monte Carlo algorithms now have ABC versions for when we don’t
know the likelihood: IS, MCMC, SMC (×n), EP etc.



MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

Target
πABC (θ, x |D) ∝ Iρ(D,x)≤επ(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)
seem to be inevitable as we need the likelihood to cancel in the
Metropolis-Hastings (MH) acceptance probability

r =
Iρ(D,x)≤επ(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

Iρ(D,x)≤επ(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
Iρ(D,x)≤εq(θ′, θ)π(θ′)

Iρ(D,x)≤εq(θ, θ′)π(θ)

In practice, this algorithm often gets stuck, as the probability of
generating x ′ near D can be tiny if ε is small.

Lee 2012 introduced several alternative MCMC kernels that are variance
bounding and geometrically ergodic.
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Sequential ABC algorithms
Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, Del Moral et al. 2011,
Drovandi et al. 2011, ...

The most popular efficient ABC algorithms are sequential methods.

Choose upon a sequence of tolerances ε1 > ε2 > . . . > εT and let πt be
the ABC approximation when we using tolerance εt .
We aim to sample N particles successively from

π1(θ), . . . , πT (θ) = target

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).

ABC SMC (Sequential Monte Carlo)

Intermediate DistributionsPrior Posterior

✏1 ✏2 . . . ✏T�1 ✏T
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At each stage t, we aim to construct a weighted sample of particles that
approximates πt(θ, x).{(

z
(i)
t ,W

(i)
t

)}N

i=1
such that πt(z) ≈

∑
W

(i)
t δ

z
(i)
t

(dz)

where z
(i)
t = (θ

(i)
t , x

(i)
t ).

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).
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Regression Adjustment

References:

Beaumont et al. 2003

Blum and Francois 2010

Blum 2010

Leuenberger and Wegmann 2010



Post-hoc regression adjustments
Beaumont et al. 2002, Blum and Francois 2010

Consider the relationship between the conditional expectation of θ and s:

E(θ|s) := m(s)

Think of this as a model for the conditional density π(θ|s): for fixed s

θi = m(s) + ei

where θi ∼ π(θ|s) and ei are zero-mean and uncorrelated

Suppose we’ve estimated m(s) by m̂(s) from samples {θi , si}.
Estimate the posterior mean by

E(θ|sobs) ≈ m̂(sobs),

and form the empirical residuals

êi = θi − m̂(si )

We can approximate the posterior π(θ|sobs) by adjusting the parameters

θ∗i = m̂(sobs) + êi = θi + (m̂(sobs)− m̂(si ))
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Using regression-adjustment, we use the estimate of the posterior mean at
sobs and the residuals from the fitted line to form the posterior.



Normal-normal conjugate model, linear regression
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True
Regression adjusted

Regression-adjusted posterior more confident, as the θi have been
adjusted to account for the discrepancy between si and sobs

Allows larger ε for same accuracy

Sequential algorithms can not easily be adapted, thus regression
adjustment used with rejection sampling only.



Surrogate/emulator methods

References:

Kennedy and O’Hagan 2001

Wilkinson 2014

Conrad, Marzouk, Pillai, Smith 2014
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Corrander et al. 2015



Surrogate/emulator approximations
Sacks et al. 1989, Kennedy et al. 2001, W. 2014/15, Meeds et al. 2015, Corrander et al.
2015

ABC requires a large number of simulator runs:

Suppose we can only afford a limited ensemble of simulator
evaluations

D = {θi , f (θi )}ni=1

We are uncertain about f (θ) for θ not in the design

An emulator is a cheap statistical surrogate f̃ (θ) which approximates f (θ).

Gaussian processes (GP) are a common choice: f̃ (·) ∼ GP(m(·), c(·, ·))
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We can then use f̃ in place of f in any analysis.
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Likelihood estimation
W. 2013

It can be shown that ABC replaces the true likelihood L(θ) ≡ π(D|θ) by
an ABC likelihood

LABC(θ) =

∫
Iρ(D,X )≤επ(X |θ)dX

We can estimate this using repeated runs from the simulator

L̂ABC(θ) ≈ 1

N

∑
Iρ(D,Xi )≤ε

where Xi ∼ π(X |θ).

For many problems, we believe the likelihood is continuous and smooth,
so that LABC(θ) is similar to LABC(θ′) when θ − θ′ is small

We can model LABC(θ) and use the model to find the posterior in place of
running the simulator.
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Ricker Model

It is usually too difficult to model L(θ) for all θ

Sufficient to know L(θ) in regions of high likelihood, and to know
that it is small elsewhere.

Use this initial model to rule out large parts of parameter space as
implausible using a conservative heuristic.
Build a better model, repeat...
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Ricker Model - third wave



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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The Wood 2010 ABC-MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, over 98% of the original input space was ruled out
as implausible

the MCMC sampler does not waste time exploring those regions.



Implausibility

When using emulators for history-matching and ABC, we want to estimate

p(θ) = P(Accept θ)

based upon a GP model of the simulator or likelihood

f (θ) ∼ GP(m(·), c(·, ·))

The key determinant of emulator accuracy is the design used

Dn = {θi , f (θi )}Ni=1

Usual design choices are space filling designs

Maximin latin hypercubes, Sobol sequences
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Entropic designs
Active learning/sequential design

However, space filling designs are good for global approximations, but
wasteful for calibration

Instead build a sequential design θ1, θ2, . . . using the current
classification

p(θ) = P(Accept θ|Dn)

to guide the choice of design points

The entropy of the classification surface is

E (θ) = −p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))

One (unwise) approach is to choose the next design point where we are
most uncertain.

θn+1 = arg maxE (θ)

design points tend to accumulate on the edge of the domain Θ.
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Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

En =

∫
E (θ)dθ

where n denotes it is based on the current design of size n.

Choose the next design point, θn+1, to minimise the expected
average entropy

θn+1 = arg min Jn(θ)

where
Jn(θ) = E(En+1|θn+1 = θ)



Toy 1d example f (θ) = sin θ - Expected entropy



Toy 1d example f (θ) = sin θ - Expected entropy



Toy 1d: min expected entropy vs max entropy

After 10 iterations, choosing the point of maximum entropy

we have found the plausible region to reasonable accuracy.



Summary Statistics

References:

Blum, Nunes, Prangle and Sisson 2012
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Summary statistic selection: error trade-off
Fearnhead and Prangle 2012, Blum, Nunes, Prangle, Fearnhead 2012

The error in the ABC approximation can be broken into two parts
1 Choice of summary:

π(θ|D)
?≈ π(θ|S(D))

2 Use of ABC acceptance kernel:

π(θ|sobs)
?≈ πABC (θ|sobs) =

∫
π(θ, s|sobs)ds

∝
∫

Iρ(sobs ,S(X ))≤επ(x |θ)π(θ)dx

The first approximation allows the matching between S(D) and S(X ) to
be done in a lower dimension. There is a trade-off

dim(S) small: π(θ|sobs) ≈ πABC (θ|sobs), but π(θ|sobs) 6≈ π(θ|D)

dim(S) large: π(θ|sobs) ≈ π(θ|D) but π(θ|sobs) 6≈ πABC (θ|sobs)
as curse of dimensionality forces us to use larger ε
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Automated summary selection
Blum, Nunes, Prangle and Fearnhead 2012

Suppose we are given a candidate set S = (s1, . . . , sp) of summaries from
which to choose.

Methods break down into groups.

Best subset selection
I Joyce and Marjoram 2008
I Nunes and Balding 2010

Projection
I Blum and Francois 2010
I Fearnhead and Prangle 2012
I Pudlo, Marin, Estoup, Cornuet, Gautier, Robert 2014.

Regularisation techniques
I Blum, Nunes, Prangle and Fearnhead 2012

Machine learning type tools increasingly used to find good discriminating
summary statistics.
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Model selection
W. 2007, Grelaud et al. 2009

But often we want to compare models → Bayes factors

B12 =
π(D|M1)

π(D|M2)

where π(D|Mi ) =
∫
Iρ(D,X )≤επ(x |θ,Mi )π(θ)dxdθ.

For rejection ABC

π(D|M) ≈ 1

N

∑
Iρ(D,Xi )≤ε

where Xi ∼ M(θi ) with θi ∼ π(θ).

This reduces to the acceptance rate for uniform ABC
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Summary statistics for model selection
Didelot et al. 2011, Robert et al. 2011

Care needs to be taken with regard summary statistics for model selection.
Everything is okay if we target

BS =
π(S(D)|M1)

π(S(D)|M2)

Then the ABC estimator B̂εS → BS as ε→ 0,N →∞ (Didelot et al.
2011).

However,
π(S(D)|M1)

π(S(D)|M2)
6= π(D|M1)

π(D|M2)
= BD

even if S is a sufficient statistic!

S sufficient for f1(D|θ1) and f2(D|θ2) does not imply sufficiency for
{m, fm(D|θm)}. Hence B̂εS 6→ BD .
Not a problem if we view inference as conditional on a carefully chosen S .
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Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead.

The main challenges for ABC are

finding good summary statistics for high dimensional problems

dealing with computationally expensive simulators.

Thank you for listening!



Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead.

The main challenges for ABC are

finding good summary statistics for high dimensional problems

dealing with computationally expensive simulators.

Thank you for listening!


