

Feature Selection Topics

Sergei V. Gleyzer

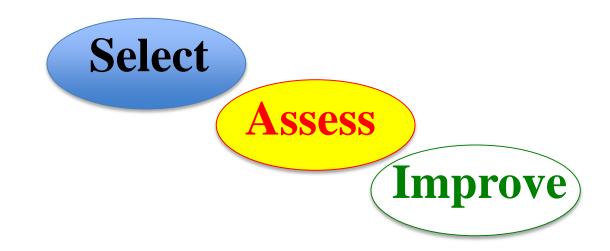
Data Science at the LHC Workshop Nov. 9, 2015

- Motivation
- What is Feature Selection
- Feature Selection Methods
- Recent work and ideas
- Caveats

- Common Machine Learning (ML) problems in HEP:
 - Classification or class discrimination
 - Higgs event or background?
 - Regression or function estimation
 - How to best model particle energy based on detector measurements

- While performing data analysis one of the most crucial decisions is which features to use
 - Garbage In = Garbage Out
 - Ingredients:
 - Relevance to the problem
 - Level of understanding of the feature
 - Power of the feature and its relationship with others

• How to:



Feature set used to solve the problem

Example

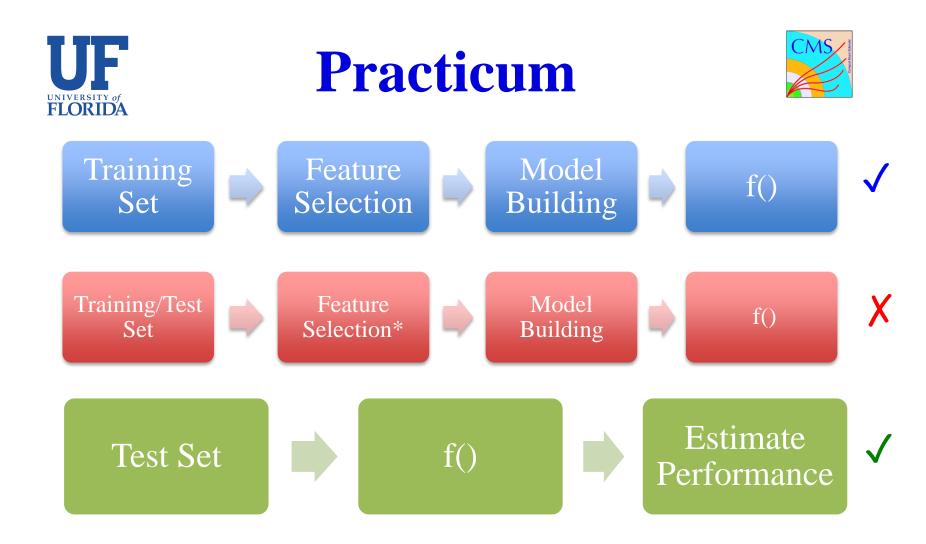
- Build a classifier to discriminate events of different classes based on event kinematics
- Typical initial feature set:
 - Functions of object four-vectors in event
 - Basic kinematics: transverse momenta, invariant masses, angular separations
 - More complex features relating objects in the event topology using physics knowledge to help discriminate among classes (thrusts, helicity e.t.c.)

- Features initially chosen due to their individual performance
 - How well does X discriminate between signal and background?
 - Vetos: Is X well-understood?
 - Theoretical and other uncertainties
 - Monte-Carlo and data agreement
 - Arrive at order of 10-30 features (95% use cases)

UF FLORIDA Feature Engineering

- By combining features with each other, boosting into other frames of reference* this set can grow quickly from tens to hundreds of features
 - That's ok if you have enough of computational power
 - Still small compared to 100k features of cancer/image recognition datasets
 - Balance between Occam's razor and need for additional performance/power

* JHEP 1104:069,2011 K. Black, et. al.



***Feature Selection Bias**

UNIVERSITY OF FLORIDA	Methods		
Filters	Feature Selection		Model Building
Wrappers	Model Building		Feature Selection
Embedded- Hybrid	Feature Selection during Model Building		

- Filters: usually fast
 - No feedback from the Classifier
 - Use correlations/mutual information gain
 - "quick and dirty" and less accurate
 - **Useful in pre-processing**

Feature Selection

Model Building

Example algorithms: information gain, Relief, rank-sum test, e.t.c.

FIORIDA

• Wrappers: typically slower and relatively more accurate (due to model-building)

Wrapper Methods

- Tied to a chosen model:
 - Use it to evaluate features
 - Assess feature interactions
 - Search for optimal subset of features
- Different types:
 - Methodical
 - Probabilistic (random hill-climbing)
 - Heuristic (forward backward elimination)

Feature

Selection

Model

Building

UF EX: Feature Importance

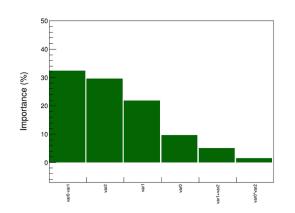
Feature Importance →

$$FI(X_i) = \sum_{S \subseteq V: X_i \in S} F(S) \times W_{X_i}(S)$$

- Full feature set {*V*}
- Feature subsets {*S*}
- Classifier performance *F*(*S*)
- Fast stochastic version uses random subset seeds

proportional to classifier performance in which feature participates

$$W_{X_i}(S) \equiv 1 - \frac{F(S - \{X_i\})}{F(S)}$$

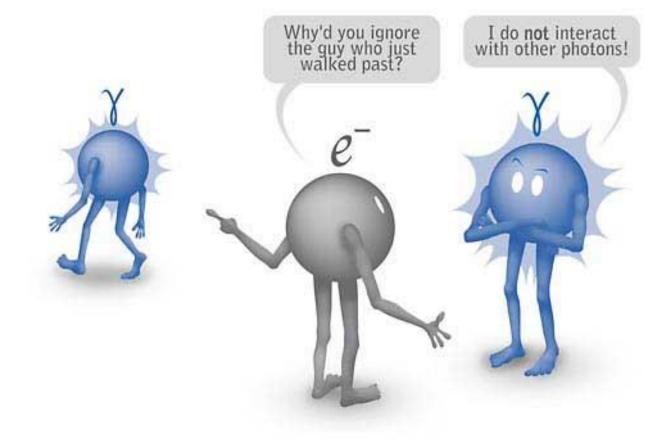


Example: RuleFit

- Rulefit: rule-based binary classification and regression (J. Friedman)
 - Transforms decision trees into rule ensembles
 - A powerful classifier even if some rules are poor
- Feature Importance:
 - Proportional to performance of classifiers in which features participate (similar)
 - Difference: no W_i(S)
 - Individual Classifier Performance evenly divided among participating features

UNIVERSITY of **FLORIDA**

- Feature Selection Bias
 - Common mistake leading to over-optimistic evaluation of classifiers from "usage" of the testing dataset
 - Solution:
 - M-fold cross-validation/Bootstrap
 - Second testing sample for evaluation



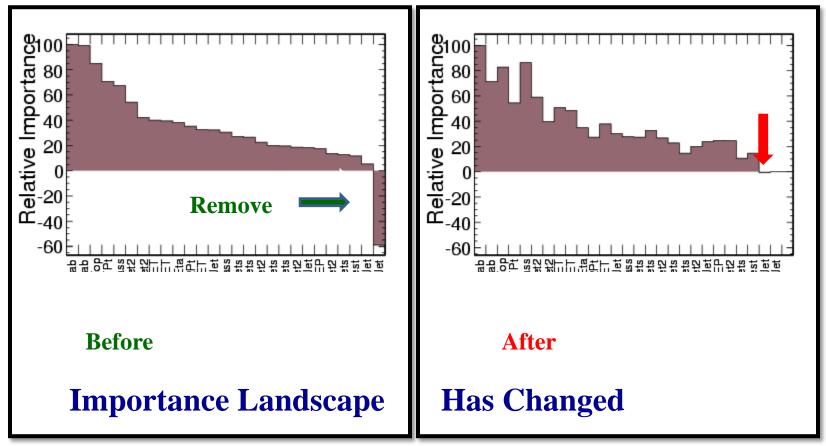
Features Like to Interact Too

UF FLORIDA Feature Interactions

- Features often interact strongly in the classification process.
 - Their removal affects the performance of remaining interacting partners
 - Strength of interaction quantified by some wrapper methods
 - In some classifiers features can be overlooked (or shadowed) by their interacting partners

Beware of hidden reefs

Selection Caveats



Holds for any criterion that doesn't incorporate interactions

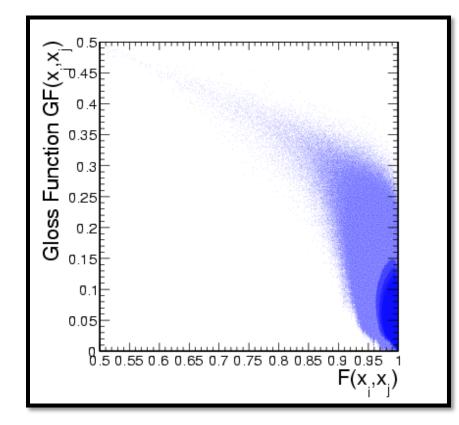
- GLoss Function → Global measure of loss
 - Selects feature subsets for global removal

$$GF(S') \equiv 1 - \frac{\sum_{S \subset (V-S')} F(S)}{2^{|V-S'|}}$$
 S' is the subset
to be removed

• Shows the amount of predictive power loss relative to the upper bound of performance of remaining classifiers

$$\sum_{S \subset (V-S')} F(S)_{\max} = 2^{|V-S'|}$$

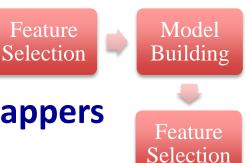
UF FLORIDA Global Loss and Classifier Performance



GLoss Function minimization NOT EQUIVALENT to Maximization of F(S) – i.e. finding the highest performing classifier and its constituent features

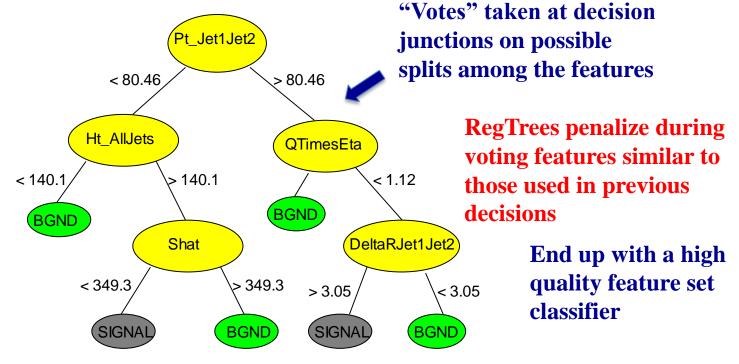
- Probabilistic Wrapper Methods:
 - Stochastic approach
- Hybrid Algorithms:
 - combine Filters and Wrappers
- Embedded Methods

Feature Selection during Model Building



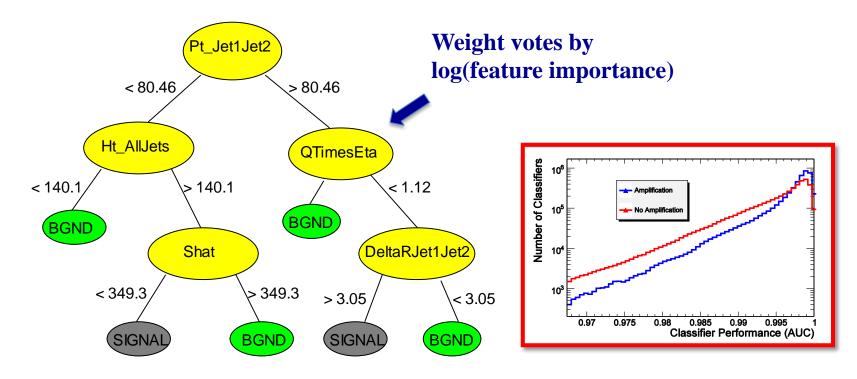
- At model-building stage assess feature importance and incorporate it in the process
 - Way to penalize/remove features in the classification or regression process
 - Regularization
 - Examples: LASSO, RegTrees

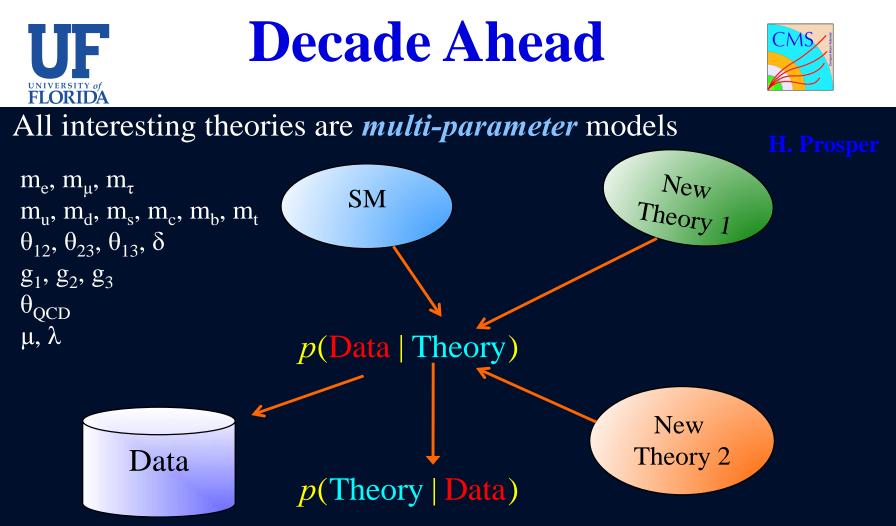
- **Inspired by Rules Regularization in Friedman and Popescu 2008**
- **Decision Tree Reminder:**



╵╽┣╵

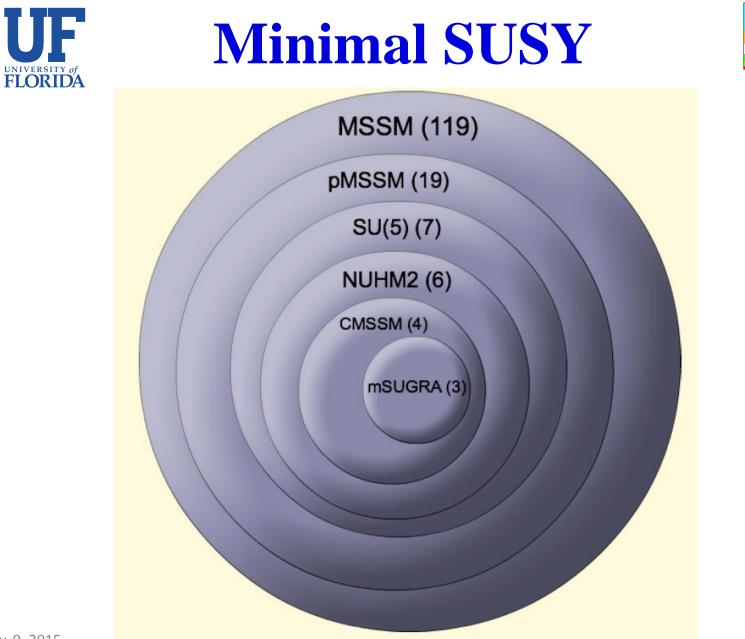
• Another example: feedback feature importance into classifier building





Basic *statistical* questions:

- 1. Which theories are preferred, given the data?
- 2. And which parameter sub-spaces within these theories?



In HEP

- Often in HEP one searches for new phenomena and applies classifiers trained on MC for at least one of the classes (signal) or sometimes both to real data
 - Flexibility is KEY to any search
 - It is more beneficial to choose a reduced parameter space that consistently produces strong performing classifiers at actual analysis time
 - Useful for general SUSY and other new phenomena searches

- R (CRAN): Boruta, RFE, CFS, Fselector, caret
- TMVA: FAST algo (stochastic wrapper), Global Loss function
- Scikit-Learn
- Bioconductor

- Feature selection is important part of robust HEP Machine Learning applications
- Many methods available
- Watch out for caveats
- Happy ANALYZING