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Motivation

• Common Machine Learning (ML) 

problems in HEP:

– Classification or class discrimination

• Higgs event or background?

– Regression or function estimation

• How to best model particle energy based on 

detector measurements
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Motivation continued

• While performing data analysis one of 

the most crucial decisions is which 

features to use

– Garbage In = Garbage Out

– Ingredients:

• Relevance to the problem

• Level of understanding of the feature

• Power of the feature and its relationship with 

others
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Goal

• How to: 

Select

Assess

Improve

Feature set 

used to solve the problem
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Example

• Build a classifier to discriminate events of 

different classes based on event kinematics

• Typical initial feature set:

– Functions of object four-vectors in event

– Basic kinematics: transverse momenta, 

invariant masses, angular separations 

• More complex features relating objects in the event 

topology using physics knowledge to help 

discriminate among classes (thrusts, helicity e.t.c.)
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Initial Selection

• Features initially chosen due to their 

individual performance

– How well does X discriminate between 

signal and background? 

• Vetos: Is X well-understood?

• Theoretical and other uncertainties

• Monte-Carlo and data agreement

– Arrive at order of 10-30 features (95% use 

cases)
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Feature Engineering

• By combining features with each other, 
boosting into other frames of reference* 
this set can grow quickly from tens to 
hundreds of features

– That’s ok if you have enough of computational 
power

• Still small compared to 100k features of 
cancer/image recognition datasets 

– Balance between Occam’s razor and need for 
additional performance/power

* JHEP 1104:069,2011 K. Black, et. al.
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Practicum
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Methods

Filters

Wrappers

Embedded-
Hybrid 
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• Filters: usually fast

– No feedback from the Classifier

– Use correlations/mutual information 
gain

“quick and dirty” and less accurate

Useful in pre-processing 

Example algorithms: information gain, 
Relief, rank-sum test, e.t.c.

Feature 
Selection

Model 
Building

Filter Methods
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Wrapper Methods

• Wrappers: typically slower and relatively 
more accurate (due to model-building)
– Tied to a chosen model:

• Use it to evaluate features

• Assess feature interactions

• Search for optimal subset of features

– Different types: 
• Methodical

• Probabilistic (random hill-climbing)

• Heuristic (forward backward elimination)
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• Feature Importance proportional to classifier 

performance in which

feature participates 

• Full feature set  {V}

• Feature subsets {S}

• Classifier performance F(S)

• Fast stochastic version

uses random subset seeds

Ex: Feature Importance
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Example: RuleFit

• Rulefit: rule-based binary classification and 
regression (J. Friedman)
– Transforms decision trees into rule ensembles
– A powerful classifier even if some rules are 

poor

• Feature Importance:
– Proportional to performance of classifiers in 

which features participate (similar)
– Difference: no Wi(S)

• Individual Classifier Performance evenly divided 
among participating features
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Selection Caveats

• Feature Selection Bias

– Common mistake leading to over-optimistic 
evaluation of classifiers from “usage” of the 
testing dataset

– Solution:

• M-fold cross-validation/Bootstrap

• Second testing sample for evaluation 
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Feature Interactions

Nov. 9, 2015 Sergei V. Gleyzer                     Data Science at LHC Workshop 16



Feature Interactions

• Features often interact strongly in the 
classification process. 

– Their removal affects the performance of 
remaining interacting partners

• Strength of interaction quantified
by some wrapper methods

– In some classifiers features can be 
overlooked (or shadowed) by their 
interacting partners
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Beware of 
hidden reefs



Selection Caveats
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After

Remove

Before

Importance Landscape       Has Changed

Holds for any criterion that doesn’t incorporate interactions



Global Loss Function

• GLoss Function          Global measure of loss 

– Selects feature subsets for global removal

• Shows the amount of predictive power loss 

relative to the upper bound of performance of 

remaining classifiers
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Global Loss and Classifier 

Performance

Nov. 9, 2015 Sergei V. Gleyzer                     Data Science at LHC Workshop 20

GLoss Function minimization NOT EQUIVALENT to 

Maximization of F(S) – i.e. finding the highest performing 

classifier and its constituent features



Recent Work

• Probabilistic Wrapper Methods:

– Stochastic approach

• Hybrid Algorithms: 

– combine Filters and Wrappers 

• Embedded Methods 
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Embedded Methods

• At model-building stage assess feature 
importance and incorporate it in the 
process  

– Way to penalize/remove features in the 
classification or regression process

• Regularization

• Examples: LASSO, RegTrees
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Regularized Trees

• Inspired by Rules Regularization in 

Friedman and Popescu 2008 

• Decision Tree Reminder:
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Pt_Jet1Jet2

Ht_AllJets QTimesEta

Shat DeltaRJet1Jet2

BGND

BGND

BGND

BGNDSIGNAL SIGNAL

< 80.46

< 140.1

< 349.3

< 1.12

> 80.46

> 140.1

> 349.3 > 3.05 < 3.05

“Votes” taken at decision 

junctions on possible 

splits among the features   

RegTrees penalize during 

voting features similar to 

those used in previous 

decisions

End up with a high 

quality feature set 

classifier 



Feature Amplification

• Another example: feedback feature 

importance into classifier building 
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Pt_Jet1Jet2

Ht_AllJets QTimesEta

Shat DeltaRJet1Jet2

BGND

BGND

BGND

BGNDSIGNAL SIGNAL

< 80.46

< 140.1

< 349.3

< 1.12

> 80.46

> 140.1

> 349.3 > 3.05 < 3.05

Weight votes by 

log(feature importance)



The Decade Ahead 

Data 

New 
Theory 1 

New 

Theory 2 

p(Data | Theory)

SM 
me, mµ, mτ 

mu, md, ms, mc, mb, mt 

θ12, θ23, θ13, δ 

g1, g2, g3 

θQCD 

µ, λ 

Basic statistical questions: 

1. Which theories are preferred, given the data? 

2. And which parameter sub-spaces within these theories? 

All interesting theories are multi-parameter models 

p(Theory | Data)

Decade Ahead
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Minimal SUSY
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In HEP

• Often in HEP one searches for new 
phenomena and applies classifiers trained 
on MC for at least one of the classes (signal) 
or sometimes both to real data
– Flexibility is KEY to any search

– It is more beneficial to choose a reduced 
parameter space that consistently produces 
strong performing classifiers at actual analysis 
time 
• Useful for general SUSY and other new phenomena 

searches  
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Feature Selection Tools

• R (CRAN): Boruta, RFE, CFS, Fselector, 
caret

• TMVA: FAST algo (stochastic wrapper), 
Global Loss function

• Scikit-Learn

• Bioconductor
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Summary

• Feature selection is important part of 
robust HEP Machine Learning 
applications

• Many methods available

• Watch out for caveats

• Happy ANALYZING
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