
deep learning tutorial

Peter Sadowski
November 11, 2015

University of California Irvine



overview

Introduction

Deep Learning Software Packages

Hyperparameters

Exercises

Common problems

Notes

1



introduction



introduction

Why neural networks?

∙ Capacity to model complex functions.
∙ Adaptable to different types of machine learning problems.
∙ ’Efficient’ training on large datasets.
∙ Empirical successes.

Why now?

∙ Improvements in computation (particularly GPUs).
∙ Better understanding of some of the tricky details.

3



introduction

Deep learning’s promise:
Replacement of engineered features with learned features

Engineered features Learned features

4



introduction

Neural Network (NN) Deep NN Convolutional NN

5



introduction

Recurrent neural network

6



deep learning software packages



deep learning software packages

What good deep learning software can provide:

∙ All the standard DL models and algorithms.
∙ Recursive or convolutional architectures.
∙ Weight decay, dropout, denoising.

∙ Symbolic representation and optimization.
∙ Architecture agnosticism (GPUs, parallelism, etc.)

It cannot provide (yet):

∙ Reasonable model architecture.
∙ Optimal learning algorithm hyperparameters.
∙ Out-of-the-box success.

Getting good results may take some work!

8



deep learning software packages

Theano (Python)

∙ Underlies many popular deep learning tools:
∙ Pylearn2
∙ Blocks
∙ Keras
∙ Lasagne
∙ nolearn

Torch (LuaJIT)

Caffe (C++)

Neon

Brainstorm

TensorFlow

All open source with permissive licenses, under active development.
9



deep learning software packages

Advantages of Theano:

∙ Computer algebra system with symbolic differentiation.
∙ Compiler will automatically optimize your computations for
speed, numerical stability.

∙ Dynamic C code generation for speed.
∙ Support for latest NVIDIA CuDNN libraries.
∙ Integration with NumPy.
∙ Well-tested and well-documented.
∙ Large user community.
∙ Relatively easy installation.

Available on PyPI: pip install Theano

10



deep learning software packages

Advantages of Pylearn2:

∙ Built on Theano, but requires minimal familiarity.
∙ Well-tested and well-documented.

Put the following project in your python path:
git clone git://github.com/lisa-lab/pylearn2.git

11



deep learning software packages

Summary of requirements for this tutorial:

∙ Theano (link)
∙ Download Pylearn2 (link) and include it in your PYTHONPATH.
∙ For visualizations: IPython notebooks (Jupyter), matplotlib
∙ For HDF5 files: H5PY

12

http://deeplearning.net/software/theano/install.html
https://github.com/lisa-lab/pylearn2


hyperparameters



hyperparameters

Specified by user:

∙ Training data
∙ Representation (vector vs. image, etc).
∙ Normalization

∙ Model
∙ Layers: type, shape, number.
∙ Activation/transfer functions.
∙ Output type and loss function.

∙ Learning algorithm
∙ Initialization.
∙ Update rule.
∙ Learning rate.
∙ Learning rate decay.
∙ Momentum.
∙ Regularization (weight decay, dropout).
∙ Stopping criteria.

14



hyperparameters

Training data

∙ Vector vs. images vs. sequences.
∙ Pre-processing:

∙ Standardization
∙ Take log?
∙ Whitening

∙ Precision
∙ Sparsity

15



hyperparameters

Model

∙ Prediction tasks
∙ Architecture
∙ Activation function

16



hyperparameters

Prediction tasks

∙ Classification: For 2 classes, logistic neuron is used for the
output of the network. For n = 3+ classes, output has n
neurons with softmax activation function. In both cases, the
loss function is cross-entropy, so this has a nice probabilistic
interpretation.

∙ Regression: Output is real valued. Loss function is typically the
squared error.

∙ Autoencoders: The target is the input itself. Network should
have some kind of information bottleneck.

17



hyperparameters

Structure and weight-sharing

∙ Feed-forward: Computation can be represented as a Directed
Acyclic Graph.

∙ Recursive: Applying the same set of weights repeatedly in a tree
structure.

∙ Recurrent: Network contains cycles.
∙ Convolutional: ’Filter’ function applied repeatedly over one or
more dimensions.

18



hyperparameters

19



hyperparameters

Additional activation functions:

∙ Softmax
∙ Maxout
∙ Locally-competitive units
∙ Leaky ReLU
∙ Learned, parameterized activations

20



hyperparameters

Weight Initialization

∙ Saturated neurons prevent information from flowing.
∙ Gradient diffusion or explosion.
∙ Good heuristics exist:

∙ Glorot et al, 2010
∙ Saxe et al, 2014

21



hyperparameters

Learning algorithms / optimization:

∙ Stochastic gradient descent (SGD)
∙ Mini-batches
∙ Momentum
∙ Second-order methods
∙ Conjugate gradients
∙ Adagrad, RMSProp, ADAM, etc.

22



hyperparameters

Typically: We use SGD on mini-batches, setting a modest initial value
for the learning rate, then decreasing it over time by a fixed factor
(or manually).

Momentum Use initial burn in with small amount of momentum.
Often increase to 0.99-0.999.

23



hyperparameters

Regularization

∙ Weight-decay (L2 penalty on large weights)
∙ Max column norms
∙ Dropout

24



hyperparameters

Stopping criteria considerations:

∙ Overfitting.
∙ Training error convergence.
∙ Learning rate and momentum schedules.

25



exercises



exercise 1

Exotic particle search from supersymmetry:

Process with hypothetical
supersymmetric particles Background with W bosons

Classification problem with 6 million simulated examples.
Full data set at: https://archive.ics.uci.edu/ml/datasets/SUSY

From Baldi et al 2014

27



exercise 2

Classification of hand-written digits (0-9) from 28x28 pixel greyscale
images (MNIST data set).
Full data set of 70k examples: http://yann.lecun.com/exdb/mnist/

From LeCun et al

28



common problems



common problems

Obvious problems:

∙ Overfitting.
∙ Underfitting.
∙ Wrong objective function.
∙ Weights explode.

Non-obvious problems:

∙ Bad weight initialization.
∙ Gradient diffusion.
∙ Learning rate or momentum too large.

30



common problems

Learning rate too large. Too much momentum.

31



common problems

Good learning rate, good decay.

32



common problems

Fast training is not necessarily better.

From Hinton et al 2012
33



common problems

Training error increases: Debug by decreasing learning rate to a very
small value.

Exploding weights: If data set is small or neurons are linear, the
weights may grow without bound. Use weight decay or a max column
norm constraint.

Adding training data reduces performance: Check learning rate and
momentum schedule.

34



notes



a note on optimization

Local minima are not a primary concern. See Goodfellow et al 2015,
Qualitatively Characterizing Nueral Network Optimization Problems

36



hyperparameter optimization

Traditionally:

∙ Grid search
∙ ”Graduate Student Descent”

Other options:

∙ Random search
∙ Bayesian optimization with Gaussian Processes (e.g. Spearmint)
for continuous hyperparameters

∙ Active learning: http://arxiv.org/abs/1502.07943

37



introduction

38


	Introduction
	Deep Learning Software Packages
	Hyperparameters
	Exercises
	Common problems
	Notes

