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introduction

Why neural networks?

∙ Capacity to model complex functions.
∙ Adaptable to different types of machine learning problems.
∙ ’Efficient’ training on large datasets.
∙ Empirical successes.

Why now?

∙ Improvements in computation (particularly GPUs).
∙ Better understanding of some of the tricky details.
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introduction

Deep learning’s promise:
Replacement of engineered features with learned features

Engineered features Learned features
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introduction

Neural Network (NN) Deep NN Convolutional NN
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introduction

Recurrent neural network

6



deep learning software packages



deep learning software packages

What good deep learning software can provide:

∙ All the standard DL models and algorithms.
∙ Recursive or convolutional architectures.
∙ Weight decay, dropout, denoising.

∙ Symbolic representation and optimization.
∙ Architecture agnosticism (GPUs, parallelism, etc.)

It cannot provide (yet):

∙ Reasonable model architecture.
∙ Optimal learning algorithm hyperparameters.
∙ Out-of-the-box success.

Getting good results may take some work!
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deep learning software packages

Theano (Python)

∙ Underlies many popular deep learning tools:
∙ Pylearn2
∙ Blocks
∙ Keras
∙ Lasagne
∙ nolearn

Torch (LuaJIT)

Caffe (C++)

Neon

Brainstorm

TensorFlow

All open source with permissive licenses, under active development.
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deep learning software packages

Advantages of Theano:

∙ Computer algebra system with symbolic differentiation.
∙ Compiler will automatically optimize your computations for
speed, numerical stability.

∙ Dynamic C code generation for speed.
∙ Support for latest NVIDIA CuDNN libraries.
∙ Integration with NumPy.
∙ Well-tested and well-documented.
∙ Large user community.
∙ Relatively easy installation.

Available on PyPI: pip install Theano

10



deep learning software packages

Advantages of Pylearn2:

∙ Built on Theano, but requires minimal familiarity.
∙ Well-tested and well-documented.

Put the following project in your python path:
git clone git://github.com/lisa-lab/pylearn2.git
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deep learning software packages

Summary of requirements for this tutorial:

∙ Theano (link)
∙ Download Pylearn2 (link) and include it in your PYTHONPATH.
∙ For visualizations: IPython notebooks (Jupyter), matplotlib
∙ For HDF5 files: H5PY
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hyperparameters

Specified by user:

∙ Training data
∙ Representation (vector vs. image, etc).
∙ Normalization

∙ Model
∙ Layers: type, shape, number.
∙ Activation/transfer functions.
∙ Output type and loss function.

∙ Learning algorithm
∙ Initialization.
∙ Update rule.
∙ Learning rate.
∙ Learning rate decay.
∙ Momentum.
∙ Regularization (weight decay, dropout).
∙ Stopping criteria.
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hyperparameters

Training data

∙ Vector vs. images vs. sequences.
∙ Pre-processing:

∙ Standardization
∙ Take log?
∙ Whitening

∙ Precision
∙ Sparsity
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hyperparameters

Model

∙ Prediction tasks
∙ Architecture
∙ Activation function
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hyperparameters

Prediction tasks

∙ Classification: For 2 classes, logistic neuron is used for the
output of the network. For n = 3+ classes, output has n
neurons with softmax activation function. In both cases, the
loss function is cross-entropy, so this has a nice probabilistic
interpretation.

∙ Regression: Output is real valued. Loss function is typically the
squared error.

∙ Autoencoders: The target is the input itself. Network should
have some kind of information bottleneck.
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hyperparameters

Structure and weight-sharing

∙ Feed-forward: Computation can be represented as a Directed
Acyclic Graph.

∙ Recursive: Applying the same set of weights repeatedly in a tree
structure.

∙ Recurrent: Network contains cycles.
∙ Convolutional: ’Filter’ function applied repeatedly over one or
more dimensions.
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hyperparameters
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hyperparameters

Additional activation functions:

∙ Softmax
∙ Maxout
∙ Locally-competitive units
∙ Leaky ReLU
∙ Learned, parameterized activations
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hyperparameters

Weight Initialization

∙ Saturated neurons prevent information from flowing.
∙ Gradient diffusion or explosion.
∙ Good heuristics exist:

∙ Glorot et al, 2010
∙ Saxe et al, 2014
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hyperparameters

Learning algorithms / optimization:

∙ Stochastic gradient descent (SGD)
∙ Mini-batches
∙ Momentum
∙ Second-order methods
∙ Conjugate gradients
∙ Adagrad, RMSProp, ADAM, etc.
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hyperparameters

Typically: We use SGD on mini-batches, setting a modest initial value
for the learning rate, then decreasing it over time by a fixed factor
(or manually).

Momentum Use initial burn in with small amount of momentum.
Often increase to 0.99-0.999.
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hyperparameters

Regularization

∙ Weight-decay (L2 penalty on large weights)
∙ Max column norms
∙ Dropout
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hyperparameters

Stopping criteria considerations:

∙ Overfitting.
∙ Training error convergence.
∙ Learning rate and momentum schedules.
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exercise 1

Exotic particle search from supersymmetry:

Process with hypothetical
supersymmetric particles Background with W bosons

Classification problem with 6 million simulated examples.
Full data set at: https://archive.ics.uci.edu/ml/datasets/SUSY

From Baldi et al 2014
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exercise 2

Classification of hand-written digits (0-9) from 28x28 pixel greyscale
images (MNIST data set).
Full data set of 70k examples: http://yann.lecun.com/exdb/mnist/

From LeCun et al
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common problems

Obvious problems:

∙ Overfitting.
∙ Underfitting.
∙ Wrong objective function.
∙ Weights explode.

Non-obvious problems:

∙ Bad weight initialization.
∙ Gradient diffusion.
∙ Learning rate or momentum too large.
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common problems

Learning rate too large. Too much momentum.
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common problems

Good learning rate, good decay.
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common problems

Fast training is not necessarily better.

From Hinton et al 2012
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common problems

Training error increases: Debug by decreasing learning rate to a very
small value.

Exploding weights: If data set is small or neurons are linear, the
weights may grow without bound. Use weight decay or a max column
norm constraint.

Adding training data reduces performance: Check learning rate and
momentum schedule.
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a note on optimization

Local minima are not a primary concern. See Goodfellow et al 2015,
Qualitatively Characterizing Nueral Network Optimization Problems
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hyperparameter optimization

Traditionally:

∙ Grid search
∙ ”Graduate Student Descent”

Other options:

∙ Random search
∙ Bayesian optimization with Gaussian Processes (e.g. Spearmint)
for continuous hyperparameters

∙ Active learning: http://arxiv.org/abs/1502.07943
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