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INTRODUCTION

Why neural networks?

- Capacity to model complex functions.

- Adaptable to different types of machine learning problems.
- 'Efficient’ training on large datasets.

- Empirical successes.

Why now?

- Improvements in computation (particularly GPUs).

- Better understanding of some of the tricky details.



INTRODUCTION

Deep learning’s promise:
Replacement of engineered features with learned features
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INTRODUCTION

Recurrent neural network
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DEEP LEARNING SOFTWARE PACKAGES

What good deep learning software can provide:

- All the standard DL models and algorithms.

- Recursive or convolutional architectures.
- Weight decay, dropout, denoising.

- Symbolic representation and optimization.
- Architecture agnosticism (GPUs, parallelism, etc.)

It cannot provide (yet):

- Reasonable model architecture.
- Optimal learning algorithm hyperparameters.

- Out-of-the-box success.

Getting good results may take some work!



DEEP LEARNING SOFTWARE PACKAGES

Theano (Python)

- Underlies many popular deep learning tools:
- Pylearn2
- Blocks
- Keras
- Lasagne
- nolearn

Torch (LuaJIT)
Caffe (C++)
Neon
Brainstorm

TensorFlow

All open source with permissive licenses, under active development.



DEEP LEARNING SOFTWARE PACKAGES

Advantages of Theano:

- Computer algebra system with symbolic differentiation.

- Compiler will automatically optimize your computations for
speed, numerical stability.

- Dynamic C code generation for speed.

- Support for latest NVIDIA CuDNN libraries.
- Integration with NumPy.

- Well-tested and well-documented.

- Large user community.

- Relatively easy installation.

Available on PyPlI: pip install Theano



DEEP LEARNING SOFTWARE PACKAGES

Advantages of Pylearn2:

- Built on Theano, but requires minimal familiarity.

- Well-tested and well-documented.

Put the following project in your python path:
git clone git:/ /github.com/lisa-lab/pylearn2.git



DEEP LEARNING SOFTWARE PACKAGES

Summary of requirements for this tutorial:

- Theano (link)

- Download Pylearn2 (link) and include it in your PYTHONPATH.

- For visualizations: IPython notebooks (Jupyter), matplotlib
- For HDF5 files: H5PY


http://deeplearning.net/software/theano/install.html
https://github.com/lisa-lab/pylearn2
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HYPERPARAMETERS

Specified by user:

- Training data
- Representation (vector vs. image, etc).
- Normalization

- Model
- Layers: type, shape, number.
- Activation/transfer functions.
- Qutput type and loss function.

- Learning algorithm
- Initialization.
- Update rule.
- Learning rate.
- Learning rate decay.
- Momentum.
- Regularization (weight decay, dropout).
- Stopping criteria.



HYPERPARAMETERS

Training data

- Vector vs. images vs. sequences.
- Pre-processing:

- Standardization

- Take log?

- Whitening
- Precision

- Sparsity



HYPERPARAMETERS

Model

- Prediction tasks
- Architecture

- Activation function



HYPERPARAMETERS

Prediction tasks

- Classification: For 2 classes, logistic neuron is used for the
output of the network. For n = 3+ classes, output has n
neurons with softmax activation function. In both cases, the
loss function is cross-entropy, so this has a nice probabilistic
interpretation.

- Regression: Output is real valued. Loss function is typically the
squared error.

- Autoencoders: The target is the input itself. Network should
have some kind of information bottleneck.



HYPERPARAMETERS

Structure and weight-sharing

- Feed-forward: Computation can be represented as a Directed
Acyclic Graph.

- Recursive: Applying the same set of weights repeatedly in a tree
structure.

- Recurrent: Network contains cycles.

- Convolutional: 'Filter’ function applied repeatedly over one or
more dimensions.



HYPERPARAMETERS
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A selection of commonly used activation
functions for artificial neurons.



HYPERPARAMETERS

Additional activation functions:

- Softmax

- Maxout

- Locally-competitive units
- Leaky RelLU

- Learned, parameterized activations



HYPERPARAMETERS

Weight Initialization

- Saturated neurons prevent information from flowing.
- Gradient diffusion or explosion.
- Good heuristics exist:

- Glorot et al, 2010
- Saxe et al, 2014



HYPERPARAMETERS

Learning algorithms / optimization:

- Stochastic gradient descent (SGD)
- Mini-batches

- Momentum

- Second-order methods

- Conjugate gradients

- Adagrad, RMSProp, ADAM, etc.

22



HYPERPARAMETERS

Typically: We use SGD on mini-batches, setting a modest initial value
for the learning rate, then decreasing it over time by a fixed factor
(or manually).

Momentum Use initial burn in with small amount of momentum.
Often increase to 0.99-0.999.

23
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HYPERPARAMETERS

Stopping criteria considerations:

- Overfitting.

- Training error convergence.
- Learning rate and momentum schedules.

Error

Early stopping

Training cycles

25
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EXERCISE 1

Exotic particle search from supersymmetry:
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Process with hypothetical
supersymmetric particles Background with W bosons

Classification problem with 6 million simulated examples.
Full data set at: https://archive.ics.uci.edu/ml/datasets/SUSY

From Baldi et al 2014



EXERCISE 2

Classification of hand-written digits (0-9) from 28x28 pixel greyscale
images (MNIST data set).
Full data set of 70k examples: http://yann.lecun.com/exdb/mnist/
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From LeCun et al
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COMMON PROBLEMS

Obvious problems:

- Overfitting.

- Underfitting.

- Wrong objective function.
- Weights explode.

Non-obvious problems:

- Bad weight initialization.
- Gradient diffusion.

- Learning rate or momentum too large.

30



COMMON PROBLEMS
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COMMON PROBLEMS
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Good learning rate, good decay.
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COMMON PROBLEMS

Test Set Error
40 T T
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Fast training is not necessarily better.

From Hinton et al 2012
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COMMON PROBLEMS

Training error increases: Debug by decreasing learning rate to a very
small value.

Exploding weights: If data set is small or neurons are linear, the

weights may grow without bound. Use weight decay or a max column
norm constraint.

Adding training data reduces performance: Check learning rate and
momentum schedule.

34



NOTES




A NOTE ON OPTIMIZATION

Local minima are not a primary concern. See Goodfellow et al 2015,
Qualitatively Characterizing Nueral Network Optimization Problems

2 Linear of maxout on MNIST SGD training of maxout on MNIST
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HYPERPARAMETER OPTIMIZATION

Traditionally:

- Grid search
- "Graduate Student Descent”

Other options:

- Random search
- Bayesian optimization with Gaussian Processes (e.g. Spearmint)

for continuous hyperparameters
- Active learning: http://arxiv.org/abs/1502.07943
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