# **DEEP LEARNING TUTORIAL**

Peter Sadowski

November 11, 2015

University of California Irvine

### **OVERVIEW**

Introduction

Deep Learning Software Packages

Hyperparameters

Exercises

Common problems

Notes

1

### Why neural networks?

- · Capacity to model complex functions.
- · Adaptable to different types of machine learning problems.
- · 'Efficient' training on large datasets.
- · Empirical successes.

### Why now?

- · Improvements in computation (particularly GPUs).
- · Better understanding of some of the tricky details.

3

# Deep learning's promise:

Replacement of engineered features with learned features



**Engineered** features



Learned features





Convolutional NN

### Recurrent neural network



5

# What good deep learning software can provide:

- · All the standard DL models and algorithms.
  - · Recursive or convolutional architectures.
  - · Weight decay, dropout, denoising.
- · Symbolic representation and optimization.
- · Architecture agnosticism (GPUs, parallelism, etc.)

### It cannot provide (yet):

- · Reasonable model architecture.
- · Optimal learning algorithm hyperparameters.
- · Out-of-the-box success.

Getting good results may take some work!

# Theano (Python)

- · Underlies many popular deep learning tools:
  - · Pylearn2
  - · Blocks
  - · Keras
  - · Lasagne
  - · nolearn

Torch (LuaJIT)

Caffe (C++)

Neon

Brainstorm

TensorFlow

All open source with permissive licenses, under active development.

# Advantages of Theano:

- · Computer algebra system with symbolic differentiation.
- Compiler will automatically optimize your computations for speed, numerical stability.
- · Dynamic C code generation for speed.
- · Support for latest NVIDIA CuDNN libraries.
- · Integration with NumPy.
- · Well-tested and well-documented.
- · Large user community.
- · Relatively easy installation.

Available on PyPI: pip install Theano

# Advantages of Pylearn2:

- · Built on Theano, but requires minimal familiarity.
- · Well-tested and well-documented.

Put the following project in your python path: git clone git://github.com/lisa-lab/pylearn2.git

# Summary of requirements for this tutorial:

- · Theano (link)
- · Download Pylearn2 (link) and include it in your PYTHONPATH.
- · For visualizations: IPython notebooks (Jupyter), matplotlib
- · For HDF5 files: H5PY



### Specified by user:

- · Training data
  - · Representation (vector vs. image, etc).
  - Normalization
- · Model
  - · Layers: type, shape, number.
  - · Activation/transfer functions.
  - · Output type and loss function.
- · Learning algorithm
  - · Initialization.
  - · Update rule.
  - · Learning rate.
  - · Learning rate decay.
  - · Momentum.
  - · Regularization (weight decay, dropout).
  - · Stopping criteria.

# Training data

- · Vector vs. images vs. sequences.
- · Pre-processing:
  - · Standardization
  - · Take log?
  - · Whitening
- · Precision
- · Sparsity

### Model

- · Prediction tasks
- · Architecture
- · Activation function

### Prediction tasks

- Classification: For 2 classes, logistic neuron is used for the output of the network. For n = 3+ classes, output has n neurons with softmax activation function. In both cases, the loss function is cross-entropy, so this has a nice probabilistic interpretation.
- **Regression:** Output is real valued. Loss function is typically the squared error.
- Autoencoders: The target is the input itself. Network should have some kind of information bottleneck.

# Structure and weight-sharing

- Feed-forward: Computation can be represented as a Directed Acyclic Graph.
- **Recursive:** Applying the same set of weights repeatedly in a tree structure.
- · Recurrent: Network contains cycles.
- Convolutional: 'Filter' function applied repeatedly over one or more dimensions.



### Additional activation functions:

- · Softmax
- · Maxout
- · Locally-competitive units
- · Leaky ReLU
- · Learned, parameterized activations

# Weight Initialization

- · Saturated neurons prevent information from flowing.
- · Gradient diffusion or explosion.
- · Good heuristics exist:
  - · Glorot et al, 2010
  - · Saxe et al, 2014

# Learning algorithms / optimization:

- · Stochastic gradient descent (SGD)
- · Mini-batches
- · Momentum
- · Second-order methods
- · Conjugate gradients
- · Adagrad, RMSProp, ADAM, etc.

**Typically:** We use SGD on mini-batches, setting a modest initial value for the learning rate, then decreasing it over time by a fixed factor (or manually).

**Momentum** Use initial burn in with small amount of momentum. Often increase to 0.99-0.999.

# Regularization

- · Weight-decay (L2 penalty on large weights)
- · Max column norms
- · Dropout



# Stopping criteria considerations:

- · Overfitting.
- · Training error convergence.
- · Learning rate and momentum schedules.





### **EXERCISE 1**

### Exotic particle search from supersymmetry:



Process with hypothetical supersymmetric particles



Background with W bosons

Classification problem with 6 million simulated examples. Full data set at: https://archive.ics.uci.edu/ml/datasets/SUSY

From Baldi et al 2014

### **EXERCISE 2**

Classification of hand-written digits (0-9) from 28x28 pixel greyscale images (MNIST data set).

Full data set of 70k examples: http://yann.lecun.com/exdb/mnist/



From LeCun et al



# Obvious problems:

- · Overfitting.
- · Underfitting.
- · Wrong objective function.
- · Weights explode.

### Non-obvious problems:

- · Bad weight initialization.
- · Gradient diffusion.
- · Learning rate or momentum too large.



Learning rate too large.

Too much momentum.



Good learning rate, good decay.



Fast training is not necessarily better.

From Hinton et al 2012

**Training error increases:** Debug by decreasing learning rate to a very small value.

**Exploding weights:** If data set is small or neurons are linear, the weights may grow without bound. Use weight decay or a max column norm constraint.

Adding training data reduces performance: Check learning rate and momentum schedule.



#### A NOTE ON OPTIMIZATION

Local minima are not a primary concern. See Goodfellow et al 2015, Qualitatively Characterizing Nueral Network Optimization Problems





### HYPERPARAMETER OPTIMIZATION

# Traditionally:

- · Grid search
- · "Graduate Student Descent"

# Other options:

- · Random search
- · Bayesian optimization with Gaussian Processes (e.g. Spearmint) for continuous hyperparameters
- · Active learning: http://arxiv.org/abs/1502.07943



