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Systems biology: from data to understanding
Data

Sequencing data Phenotypic measurements,
disease type

Different data types

Cross section, time & spatial series
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Systems biology: from data to understanding

Data Computational modeling

Sequencing data Phenotypic measurements,
disease type
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Systems biology: three key statistical problems

+ Find relations between outcome (e.qg., specific patient
phenotype) and measurements (e.g., genes)

« Classify severity of disease state based on gene
measurements

- Find relationships among variables (genes, microbes,...)
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Systems biology: three key statistical problems

Regression
Classification

Graph learning
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Properties of many biological data

n
- Cross-sectional data
- Noisy with uncertain error distributions '
T"; i
» Number of samples n << p (number of .
predictors (e.g. genes)) p -

« Number of samples nis O(1e2)

« Number of samples p is O(1e3)

20 40 A0 ]0 100
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Real-world example: Riboflavin production in B. subtilis

Production rate Gene expressions
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High-Dimensional Statistics
with a View Toward
Applications in Biology

Peter Biihlmann, Markus Kalisch, and Lukas Meier

Seminar for Statistics, ETH Ziirich, CH-8092 Ziirich, Switzerland;
email: buhlmann@stat.math.ethz.ch, kalisch@stat.math.ethz.ch, meier@stat.math.ethz.ch
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Real-world example: Riboflavin production in B. subtilis

Production rate
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Can we identify a subset of genes
that is related to riboflavin
production?

High-dimensional regression
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High-dimensional linear regression
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igh-dimensional sparse linear regression
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igh-dimensional linear regression

We aim at variable selection 1n linear regression.
We therefore consider models of the form

Y = XB* + oe, (Model)

where Y € R” is a response vector, X € R"*? a design matrix,
o > 0 a constant, and ¢ € R” a noise vector.
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igh-dimensional linear regression with LASSO

J. R. Statist. Soc. B (1996)
58, No. 1, pp.267-288

Regression Shrinkage and Selection via the Lasso

By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]

N Y — X33
3 € arg min | 12 A3
BERP n
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igh-dimensional linear regression with LASSO

J. R. Statist. Soc. B (1996)
58, No. 1, pp.267-288

Regression Shrinkage and Selection via the Lasso

By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]

= Y — X8l
€ arg min
16 BERP n
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igh-dimensional linear regression with LASSO

J. R. Statist. Soc. B (1996)
58, No. 1, pp.267-288

Regression Shrinkage and Selection via the Lasso

By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]

tuning parameter

A |Y — X8B3
3 € arg min
BERP n

Sparsity
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igh-dimensional linear regression with LASSO

&

4

L1 ball L2 ball tuning parameter
~ Y — X33
5 c argn { 1Y = X0
BERP n

Sparsity
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igh-dimensional linear regression with LASSO

1 ball L2 ball (Tikhonov)
Bl <c 1813 <
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Algorithmic approaches to solve the LASSO

- The LASSO is a non-smooth convex optimization problems
- Many algorithms available (efficiency dependent on p and n)

- Coordinate descent, Least-angle regression (LARS), projected

sub-gradient, path-following algorithms (over lambda), warm-
start
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Convex vs. non-convex objective functions

f(x)

LASSO-type problems
b 4 X g
f(x) Neural networks
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Evaluating estimator pertormance

* Prediction error: Xﬂ* o XBH%/”
- Estimation error: ,B* — IgHz/n

- Variable selection/ p
support recovery: Hamm(S ; S)

S = SllppOI't(ﬁ*) i.e. the set of non-zero entries

A A

S = support(/3)

High-dimensional regression
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Theoretical guarantees for the LASSO

Extensive theoretical results known regarding estimation and
prediction error with respect to sample complexity, variance,
and design matrices (see Buhlmann and van de Geer, 2011)

Most basic result: Set
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Theoretical guarantees for the LASSO

* Extensive theoretical results known regarding estimation anad
prediction error with respect to sample complexity, variance,
and design matrices (see Buhlmann and van de Geer, 2011)
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Theoretical guarantees for the LASSO

* Extensive theoretical results known regarding estimation anad
prediction error with respect to sample complexity, variance,
and design matrices (see Buhlmann and van de Geer, 2011)

- Most basic result: Set 4 = 0(0'\/71 logp)

lo

L1851

n

g — xplE = 0l
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Theoretical guarantees for the LASSO

- Wainwright, 2008 showed a key result for exact support
recovery. Assume:

— Mutual incoherence: for some v > 0, we have

(X5 Xs) ' Xg Xl <1, forigs,
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Theoretical guarantees for the LASSO

- Wainwright, 2008 showed a key result for exact support
recovery. Assume:

— Mutual incoherence: for some v > 0, we have
(X5 Xs) " Xg Xl <1—7, forigs,

— Minimum eigenvalue: for some C' > 0, we have

1
Amin(—Xg’XS) > C,
mn

where Apnin(A) denotes the minimum eigenvalue of a matrix A
— Minimum signal:
4o

B 2 A(I(XEXs) oo + 5 ), for i€ S,
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Theoretical guarantees for the LASSO

Under these conditions on the design X and predictors and

A > 20+/2nlogp/y

then the LASSO will recover the correct support (and sign)

with high probability.
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How do we find the correct regularization?
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Three popular model selection choices

- k-fold cross-validation
 Information criteria (BIC,AIC,...)

- Stability selection (based on subsampling, bootstrapping)
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Three popular model selection choices

1 Cross-validated MSE of Lasso fit
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How can we get rid of tuning”? The TREX

LASSO

wY—sz
n

B € arg min + )\||ﬁ||1}

BERP
From theory we know:
ol X "€l

n
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How can we get rid of tuning”? The TREX

LASSO

B\ € arg min
BeERP

Y — X3||?
n

From theory we know:
ol X "€l

n

TREX

N Y — X33
B € argmin < 5 ”T S, + |8]]1
perr |3l X (Y — XB)|loo
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Standard approach: The LASSO (Tibshirani, 1996)

Y — X3
Y - XBI _
n

BLasso(A) € argmin {
BERP

Zl\ﬁﬂl} . (Lasso)

+ convex optimization problem
+ good statistical properties
- Tuning of regularization parameter required

Novel proposition: The TREX (Lederer and M., AAAI 2015)

BTrREX € argmin
BERP

{ Y — XBlI3

X7 X8 ”1} ’

(TREX)

+ good statistical properties
+ Tuning-free method
- non-convex optimization problem
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How can we solve the TREX?

. e o |y=x8|13
The data-fitting term L(3) = TIIXT(Y=XB)]|
5 O

TREX objective function frrex = L(5) + ||B]|1 is approximated

— Y—X 2
by the smooth term L(3) = %|||>|<T(Y_§<||BZ)||q.

of the non-smooth

e In practice, for any ¢ > 10, the function L(3) + ||3]|; is a
sufficient approximation to frrpy and can be efficiently
minimized with projected scaled sub-gradient algorithms

g 1/p . Ty |2
X|lp = Z:r.-p . —I\x||, = ———.
ixlyi= (Slal) gl = T
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Numerical illustration
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Figure 1. Hamming distances (to true support) on
synthetic normal data generated using (Model) with parameters n=100,
p=500, f*=11,1,1,1,1,0,...,0]) and off-diagonal correlation matrix entries
K =0 (first column), k = 0.5 (second column), and k = 0.9 (third column).
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Real-world example: Riboflavin production in B. subtilis

Production rate Gene expression
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Can we identify a subset of genes that is related to
riboflavin production?
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Yes, we can!

=mm easured rate
—— Lasso-CV
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Standardized log(production rate)
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9 YDDK 0.35

'-A
o

YEBC

0.35

Figure 3. Left: Best fit of different models Lasso-CV with 38 genes, TREX
with 20 genes, and B-TREX with three genes. Right: Top 10 list of genes,
found by B-TREX (and the three genes found by stability selection [6]).

High-dimensional regression
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Thought experiment: Riboflavin production in B. subitilis

Production rate
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Thought experiment: Riboflavin production in B. subitilis

Production rate

+1 22
Y
-1 60

Gene expre

Image that only measured high (+1)/low(-1) production

rate!
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Thought experiment: Riboflavin production in B. subitilis

Production rate Gene expression
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Image that only measured high (+1)/low(-1) production
rate!

This is a classification task!
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igh-dimensional classification

- The data Y are discrete labels yi(-1,1)

- Simplest solution is logistic regression instead of linear
regression

1
1 + exp(—(81xi))

PI‘Ob(yi ‘Xz) —
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igh-dimensional classification

- The data Y are discrete labels yi(-1,1) N

Class labels'

- Simplest solution is logistic regression instead of linear
regression

1

Prob(yi|xi) = 1 + exp(—(81x;))
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igh-dimensional classification

- The data Y are discrete labels yi(-1,1) "

Class labels'

« Simplest solution is logistic regression instead of linear
regression

1
1 + exp(—(81xi))

PI‘Ob(yi ‘X@) —

- LASSO analog is sparse logistic regression

f(B8) =1/n) log(1+exp(~yi(8"x:))) + AlBll
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igh-dimensional classification

- The data Y are discrete labels yi(-1,1) "

Class labels'

« Simplest solution is logistic regression instead of linear
regression

1
1 + exp(—(81xi))

PI‘Ob(yi ‘X@) —

- LASSO analog is sparse logistic regression

f(B) =d/n ) log(1 +exp(—yi(8" x:))) + AllB1
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igh-dimensional classification

- The data Y are discrete labels yi(-1,1) "

Class labels'

« Simplest solution is logistic regression instead of linear
regression

1
1 + exp(—(81xi))

PI‘Ob(yi ‘X@) —

- LASSO analog is sparse logistic regression
Sparsity

f(8) =a/n ) log(1+exp(—yi(8" %))} A 1Bl
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igh-dimensional classification

- The data Y are discrete labels yi(-1,1) "

Class labels'

« Simplest solution is logistic regression instead of linear
regression

1
1 + exp(—(81xi))

PI‘Ob(yi ‘X@) —

- LASSO analog is sparse logistic regression
Sparsity

f(B)—l/nzlog 1+ exp(—yi (8" %)) € AIB]l:
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Sparse logistic regression is the core of our

recent VIPUR framework for protein variant
prediction

bioRxiv preprint first posted‘q?@mq,g,)ctobeml@ﬂm§;doi:1h;1g:/1dx.l§i@eorglj_0.m 01/029041; The copyright
holder for this preprint is the author/funder. It is made available under a CC-BY-ND 4.0 International license.

Published online when published 2015 Nucleic Acids Research, 2015, Vol. ???, No. ? 1-28
doi:10.1093/nar/gkn000

Robust Classification of Protein Variation Using Structural
Modeling and Large-Scale Data Integration

Evan H. Baugh!®*, Riley Simmons-Edler!:3, Christian L. Miiller*3:5, Rebecca F. Alford®”, Natalia
Volfovsky?, Alex E. Lash?, Richard Bonneau 1345 *

1 Department of Biology, New York University, NY, NY 10003 ? Computer Science Department, New York University, NY,
NY 10003 2 New York University Center for Genomics and Systems Biology, NY, NY 10003 4 Simons Foundation, NY, NY
10010 ® Simons Center for Data Analysis, Simons Foundation, NY, NY 10010 6 Carnegie Mellon University Department of
Chemistry, 5000 Forbes Ave, Pittsburgh, PA, 15289 7 Commack High School, Commack NY, 11725
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What if p and n are really large”
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What if p and n are really large”

Volkan Cevher, Stephen Becker, and Mark Schmidt

Convex Optimization
for Big Data

No problem!

. IEY Signal Processing
" §&1 for Big Data

Scalable, randomized, and parallel algorithms

for big data analytics
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What if p and n are really large”? CoCoA

“Communication-Efficient Distributed Block-Coordinate Ascent”

CoCoA+ paper (ICML 2015)
CoCoA paper (NIPS 2014)

prox CoCoA / primal CoCoA: on arXiv soon

code is available on github

Martin Jaggi, Simone Forte, Virginia Smith,
Martin Taka¢, Chenxin Ma, Tribhuvanesh Orekondy,
Aurelien Lucchi, Peter Richtarik, Thomas Hofmann,

Michael I. Jordan
slides adapted from M. Jaggqi

High-dimensional regression November 12, 2015::CERN
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Machine Learning Applications

Classification
Support Vector Machine (SVM)

---------------------------------------------

. . CoCoA+
| ( reg.: L1, L2., elastic-net) : D — dual
Logistic Regression :
(req.: L1, L2, elastic-net) . prox CoCoA+
Structured Prediction D = dual
(reg.: L1, L2, elastic-net) : .
. primal prox CoCoA+
Regression ,
D = primal
Least Squares
(reg.: L1, L2, elastic-net) "L1: get bounded support!

slides adapted from M. Jaggqi
High-dimensional regression November 12, 2015::CERN
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Experiments

Note that n>p possible

Dataset Training n | Features p | Sparsity A | Workers K

cov 522,911 54 | 22.22% | le-6 4

revl 677,399 47236 | 0.16% | le-6 8

imagenet 32,751 160,000 100% | 1le-5 32

) Cov . RCV1 . Imagenet
10 10 T 10 T
Z10° Z10° Z10°
© © ©
£ £ £ )
5 5 i ]
@ 107 @ 1072 3102
© © ©
£ £ E
a a a
& 107 ———GOCOA (H=1e6) 1 8 107 ———COCOA (H=1e6) 8 107 ———COCOA (H=1e3)
mini-batch-CD (H=100) mini-batch-CD (H=100) mini-batch-CD (H=1)
local-SGD (H=1e6) local-SGD (H=1e5) local-SGD (H=1e3)
. miqi—batch—SQD(H:U M’\/’WV‘V‘W'\’J " mini—patch—SGD (H=100) : : I mini—‘batch—SGD (H=10) : :
10 0 20 60 80 100 10 0 100 200 300 400 10 0 200 400 600 800
Time (s) Time (s) Time (s)

slides adapted from M. Jagqi
High-dimensional regression

Time<800s

Spcwr‘l'zZ
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Dissolve struet

A Library for Distributed Structured Prediction

built on Spor‘l'(\Z
Open Source
Approximate Inference allowed!
drop-in replacement for SYMstruct

Structured SVM solver

Block Coordinate
Frank-Wolfe

Distributed Optimization

CoCOA

slides adapted from M. Jaggi  dalab.github.io/dissolve-struct/

High-dimensional regression

Applications:

Text

: o Parsing

e POS tagging

-« sentence alignment
o entity linking

Biology

Protein structure &

© function
prediction

: Vision

:

- more?
© « Scene understanding .
- object localization & recog. :

Your Application?
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https://github.com/dalab/distributed-ML-benchmark
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Further extension: Structured prediction to
include your physics knowledge

« Special regularization norms when more is known about
the variables

- Examples include Group LASSO, Sparse Group LASSO,
Sparse Overlapping Group LASSO, Tree-guided LASSO

n<I-XI +0I
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Further extension: Structured prediction to
include your physics knowledge

« Special regularization norms when more is known about
the variables

- Examples include Group LASSO, Sparse Group LASSO,
Sparse Overlapping Group LASSO, Tree-guided LASSO

n<I=-X +UI
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How can we construct dependency graphs among
variables in the p>>n regime?

x g n X
20 40 60 80
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The underdetermined regime: p>>n

e A synthetic example: Sampling from a multivariate
normal distribution (MVN)

e We draw n=100,...,2000 samples from a p=600
dimensional normal distribution with zero correlation

amonag the variables

True correlation matrix Sample correlation matrix: n=100
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The p>>n problem

Spurious correlations vanish with increasing sample size
n=100 n=500

05

05 05

1 n=2000 True cerrelation matrix
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Conditional independence and sparsity

David MacKay’s Gaussian Quiz. Assume a simple system of
springs where you observe the position x of the five masses:

X1 X2 X3 X4 X5
—» — —» — —»
k k k k k k
inverse-covariance matrix or covariance matrix?
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Conditional independence and sparsity

David MacKay’s Gaussian Quiz. Assume a simple system of
springs where you observe the position x of the five masses:

X1 X2 X3 X4 X5
—» — —» — —»
k k k k k k
inverse-covariance matrix or covariance matrix?

2 —1 0 0 0] [ 0.83 0.67 0.50 0.33 0.17 |
J | 2 ] 0 0 T 0.67 1.33 1.00 0.67 0.33
K—! — R 2 -1 0 K—— | 050 1.00 1.50 1.00 0.50
{ 0 () — 1 2 —1 k .93 0.67 1.00 1.33 0.67
0 0 0 1 2 0.17 0.33 0.50 0.67 0.83
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From sparse linear regression to
dependency graphs: node-wise regression

P
\
-XI o
y
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From sparse linear regression to graphs:
node-wise regression
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Node-wise regression: Use each column as
response

p-1
( A
\
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Patch the neighborhoods together (and/or rule)
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Patch the neighborhoods together (and/or rule)

This algorithm approximately recovers the non-zero
entries of the inverse covariance matrix!
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Node-wise regression/ neighborhood selection

The Annals of Statistics

2006, Vol. 34, No. 3, 1436-1462

DOI: 10.1214/009053606000000281

© Institute of Mathematical Statistics, 2006

HIGH-DIMENSIONAL GRAPHS AND VARIABLE SELECTION
WITH THE LASSO

BY NICOLAI MEINSHAUSEN AND PETER BUHLMANN
ETH Ziirich

Theoretical results about exact conditions on when
recovery is possible!

Knowledge of optimal lambda is necessary
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Sparse graphical model inference (GLASSO)

« Sparsity of the underlying network means that the inverse
C-1 of the correlation (covariance) matrix C is sparse:
sparse Gaussian graphical model.

- Given: the sample correlation (covariance) matrix S

« Goal: Finding a sparse C-' by convex optimization
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Sparse graphical model inference (GLASSO)

« Sparsity of the underlying network means that the inverse
C-1 of the correlation (covariance) matrix C is sparse:
sparse Gaussian graphical model.

- Given: the sample correlation (covariance) matrix S

« Goal: Finding a sparse C-' by convex optimization

C~' = argming-1cpp —logdet(C~1) + tr(C~1S) + A|CH |1
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Sparse graphical model inference (GLASSO)

« Sparsity of the underlying network means that the inverse
C-1 of the correlation (covariance) matrix C is sparse:
sparse Gaussian graphical model.

- Given: the sample correlation (covariance) matrix S

« Goal: Finding a sparse C-' by convex optimization

C~! = argming-1cpp —logdet(C™1) + tr(C~18) + \|C 1|1
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Sparse graphical model inference (GLASSO)

« Sparsity of the underlying network means that the inverse
C-1 of the correlation (covariance) matrix C is sparse:
sparse Gaussian graphical model.

- Given: the sample correlation (covariance) matrix S

« Goal: Finding a sparse C-' by convex optimization

N\
C~! = argming-1cpp —logdet(C~1) + tr(C~19) @
- /|

el

/
Sparsity term
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Efficient algorithms exist for this optimization
problem even in very high dimensions

- Neighborhood selection (Meinshausen and Buehlmann,
2006)

- Graphical LASSO (Yuan et al., 2007, Friedman et al.
2008,2011)

- Alternating Linearization (Scheinberg et al., 2010),
QUadratic Inverse Covariance (Hsieh et al, 2010)

- Beautiful theoretical results!

- Extensions to non-normal data through non-parametric
approaches

 Scalable to very high dimensions (BIG and QUIC...)
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Further reading with theoretical results

Electronic Journal of Statistics
Vol. 5 (2011) 935-980

ISSN: 1935-7524

DOI: 10.1214/11-EJS631

High-dimensional covariance estimation
by minimizing /;-penalized
log-determinant divergence

Pradeep Ravikumar, Martin J. Wainwright,
Garvesh Raskutti and Bin Yu

Berkeley, CA 94720-1776 USA
e-mail: pradeepr@stat.berkeley.edu
wainwrig@stat.berkeley.edu
garveshr@stat.berkeley.edu
binyu@stat.berkeley.edu

Graph recovery performance depends on graph topology
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Neighborhood selection with the TREX (GTREX)

* Replace the LASSO with the standard TREX estimator

- Bootstrapping the TREX estimator to get edge
probabilities

- Compare estimators using varying graph topologies

Topology Adaptive Graph Estimation in High Dimensions

Johannes Lederer Christian L. Miiller
Cornell University Simons Center for Data Analysis, Simons Foundation
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Neighborhood selection with the TREX (GTREX)

Single-Hub  Double-Hub Four-Hub Four-niches Erdés-Rényi Scale-free
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Neighborhood selection with the TREX (GTREX)

Single-Hub  Double-Hub Four-Hub Four-niches Erdés-Reényi Scale-free
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Network thinking in science
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Network thinking in science

The Internet

High-dimensional regression November 12, 2015::CERN



NEW YORK UNIVERSITY SIMONS FOUNDATION

Network thinking in science

Power grid network
The Internet

High-dimensional regression November 12, 2015::CERN



NEW YORK UNIVERSITY SIMONS FOUNDATION

Network thinking in science

Power grid network Metabolic network
The Internet

High-dimensional regression November 12, 2015::CERN



NEW YORK UNIVERSITY

SIMONS FOUNDATION

Network thinking in science

Power grid network
The Internet

High-dimensional regression

Metabolic network

Transcriptional
regulatory networks

E. coli
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Network thinking in science

Power grid network Metabolic network
The Internet -

5

United States
trardmissicn grid

Sosse FOM =

—

Transcriptional
regulatory networks

E. coli
- ®)TF ..
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Network thinking in science

Power grid network Metabolic network
The Internet

Transcriptional
regulatory networks

E. coli
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Network thinking in science

Power grid network Metabolic network

The Internet
Microbial interaction networks

ranscriptional
llatory networks
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Microbial ecology: from data to understanding

Data Computational Statistics

Microbial populations  Host/environmental Estimation of species
co-variates: transcript- abundance

omics, etc _
A\

Novel regression models
for the specific data types

Estimation of species
interactions

"

Predictive

Different data types
Cross section, time & spatial series
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Microbial ecology: from data to understanding

Data

Microbial populations Host/environmental
co-variates: transcrip

omics, etc

Different habitats

Different data types

Cross section, time & spatial series

High-dimensional regression

Computational Statistics

Estimation of species
abundance

Novel regression models
for the specific data types

N

Predictive
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The scales of our micro-universe

Id - -
oo " B o,
% q 10% Viruses

102 Bacteria

1022 Stars

10" Human Microbiota

10° Human Population
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Large-scale efforts in 16S rRNA sequencing

IN microbiology

veor’rh

mMicrobiome proje

The Earth Microbiome Project is a systematic

attempt to characterize the global microbial
taxonomic and functional diversity for the benefit
of the planet and mankind

High-dimensional regression

HUMAN
MICROBIOME
PROJECT

_intestinal .

 Urogenita
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Large-scale 16S rRNA sequencing

Community

Community Sampling Sl | Sample 2

—=-0 S2RR0
W A g5 \
PCR amplify o g s OVRF #::—%é@

16 rRNA

N X
NS 5

Sequencing

Group into
OTUs

Assign Taxonomy

OTUs: Operational Taxonomic Units:
groups of similar taxa
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Large-scale 16S rRNA sequencing

Community
&~ ©©© Community Sampling Samples Analysis Tasks
A @@Q} > > gm— Classification
@";’;\’ e e Tl Regression
QQQ Ecology Networks
3##% QO*Q PCR amplify v Predict Mechanism
« 16 rRNA 0
Sample site gene A
Sequencing -
Group into
OTUs
Assign Taxonomy

OTUs: Operational Taxonomic Units:
groups of similar taxa
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Key hypothesis for network inference
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Key hypothesis for network inference

The network of interactions between the different
microbes (and the host) is sparse.

Dense network Sparse network
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Key hypothesis for network inference

Build the most parsimonious network model that
explains the data accurately and robustly.

Dense network Sparse network
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Direct microbial interaction networks from estimating
conditional dependence

TRUE NETWORK

I00-

ABUNDANCE
S

) 00 200 300 400 S00
SAMPLE
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Direct microbial interaction networks from estimating
conditional dependence

TRUE NETWORK

Pairwise Correlation

100-

" 00

Y

Z

<

2

> 50-

D 2 5

< Methods: ‘
= Pearson's coefficient ™=

' + SparCC
= CCREPE
O-

) 00 200 300
SAMPLE

High-dimensional regression

400

Correlation threshold

500 — | > +(.35, +0.5

= = 2+0.35,<+0.5
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Direct microbial interaction networks from estimating

conditional dependence

TRUE NETWORK

ABUNDANCE
S

SAMPLE

High-dimensional regression

Pairwise Correlation Conditional Independence

Methods: . Methods:
= Pearson's coefficient ™= =" Inverse Covariance
=~ SparCC 5= SPIEC-EASI with

= CCREPE
Correlation threshold
— > +0.35, £0.5
== >1+0.35,+05

sparsity estimation
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SPIEC-EASI learns parsimonious direct microbial
interaction networks from data
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SPIEC-EASI learns parsimonious direct microbial
iInteraction networks from data

[ OTuU dataj

Sparse Invers Covariance
Estimation for
Ecological ASsociation
Inference

g J
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SPIEC-EASI learns parsimonious direct microbial
interaction networks from data

[ OTU dataj

N )

Sparse graphical Stability-based

model learning model selection
G .
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SPIEC-EASI learns parsimonious direct microbial
interaction networks from data

[OTU dataj Dependency graph,

covariance matrix

N )

Sparse graphical Stability-based

model learning model selection
G .
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SPIEC-EASI learns parsimonious direct microbial
interaction networks from data

O PLOS | sateavmona:

RESEARCH ARTICLE

Sparse and Compositionally Robust Inference
of Microbial Ecological Networks

Zachary D. Kurtz'®, Christian L. Miiller>*®, Emily R. Miraldi'>*®, Dan R. Littman', Martin
J. Blaser', Richard A. Bonneau®>**

1 Departments of Microbiology and Medicine, New York University School of Medicine, New York, New York,
United States of America, 2 Department of Biology, Center for Genomics and Systems Biology, New York
University, New York, New York, United States of America, 3 Courant Institute of Mathematical Sciences,
New York University, New York, New York, United States of America, 4 Simons Center for Data Analysis,
Simons Foundation, New York, New York, United States of America
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Large-scale learning of microbial interaction
networks across multiple habitats

american
We collected 300 16S rRNA data T #Qut ..
sets with sufficient sample size across == —
multiple habitats (gut, oral, skin, fresh
water, soil, sea water, )
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Large-scale learning of microbial interaction
networks across multiple habitats

american
We collected >300 16S rRNA data MM 2gut
sets with sufficient sample size across =" p——
multiple habitats (gut, oral, skin, fresh
water, soil, sea water, )

——————

The data set comprises >10A5 different OTUs from >1074
samples
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Large-scale learning of microbial interaction
networks across multiple habitats

american
We collected >300 16S rRNA data M 2gut
sets with sufficient sample size across = ——
multiple habitats (gut, oral, skin, fresh
water, soil, sea water, )

———

The data set comprises >10A5 different OTUs from >1074
samples

We focus on 301 networks of sufficient size (Number of edges
m > 50)
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Visualization of the inferred interaction networks

HMP Microbe Networks from 4 body sites: HMP Microbe Networks from 4 body sites:

Tongue Dorsum Stool
K
o < 0o % I
g2 ® p_ Firmicutes
@ p_ Fusobacteria
@ p__Proteobacteria
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HMP Microbe

Networks from 4 body sites:
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HMP Microbe Networks from 4 body sites:

Mid-vagina Left Retroauricular crease
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Key questions for ecological network analysis

Can we find network properties that are common
to all (or most) networks across habitats?

How do microbial ecological network relate to other
ecological networks (food webs, etc.)?

High-dimensional regression November 12, 2015::CERN



NEW YORK UNIVERSITY SIMONS FOUNDATION

Key questions for ecological network analysis

Can we find network properties that are common
to all (or most) networks across habitats?

How do microbial ecological network relate to other
ecological networks (food webs, etc.)?

Is there a simple generative network model that fits
the inferred networks”?

From an evolutionary perspective: are there co-
evolutionary models that can explain the networks?
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summary

Reviewed LASSO and introduced the (tuning-free)
TREX for regression and variable selection

Pointed to implementation and useful extensions

Showed how to use these methods for dependency
graph recovery

Proposed SPIEC-EASI for inference of microbial
interactions from 16S rBNA abundance data
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What can sparse learning do for HEP?

Let’'s discuss this today and tomorrow!
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The TREX team

Johannes Lederer, UW Jacob Bien, Cornell  Irina Gaynanova, Texas A&M
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The SPIEC-EASI team

Zachary Kurtz, Rich Bonneau Martin Blaser Dan Littman
Emily Miraldi
—~
SIMONS FOUNDATION ({// \N!USchoolofMedicine
' NYU LANGONE MEDICAL CENTER

NYU
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MAGAZINE

Data Driven: The New Big Science

Who's Driving? Digits in the Sky The Facts of Life On Quantum Memory

Tang Yau Hoong

The Mathematical Shape of Things to Come

Scientific data sets are becoming more dynamic, requiring new

mathematical techniques on par with the invention of calculus. Our BOdleS, Our Data
By: Jennifer Ouellette Comments (8)

October 4, 2013 E B = | email

Email: cmueller@simonsfoundation.org
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