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Systems biology: three key statistical problems

• Find relations between outcome (e.g., specific patient 
phenotype) and measurements (e.g., genes) 

• Classify severity of disease state based on gene 
measurements 

• Find relationships among variables (genes, microbes,…)
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Systems biology: three key statistical problems

• Find relations between outcome (e.g., specific patient 
phenotype) and measurements (e.g., genes) 

• Classify severity of disease state based on gene 
measurements 

• Find relationships among variables (genes, microbes,…)

                  Regression 

                  Classification              

                  Graph learning                                     
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Properties of many biological data

• Cross-sectional data 
• Noisy with uncertain error distributions 
• Number of samples n << p (number of 

predictors (e.g. genes)) 
• Number of samples n is O(1e2) 
• Number of samples p is O(1e3)

p

n
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  
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SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''

0 10 20 30 40
0.05

0.1

0.15

0.2

0.25

0.3

Average number of predictors

A
ve

ra
ge

 C
V 

cl
as

si
fic

at
io

n 
er

ro
r

 

 
B−TREX
TREX
Lasso−CV
SIS
ISIS
Elastic Net
PED

0 100 200 300 400 500
−0.4

−0.2

0

0.2

Scan index

C
oe

ffi
ci

en
t v

al
ue

 

 

 
 Lasso−CV
 TREX
 B−TREX

Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).

2

!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .

Tuning parameters in
high-dimensional statistics

Production rate Gene expressions

��

��

��

��

��

��

���� ���� ���� �����

��

Y = X�⇤ + �"

z ⇠ N (0,⌃)

SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''

� D UREXVW VLQJOH VROXWLRQ XVLQJ PDMRULW\ YRWH�

� D UDQNHG OLVW RI YDULDEOHV EDVHG RQ IUHTXHQF\ RI RFFXUUHQFH�

%RRWVWUDSSHG 75(; �%�75(;� JHQHUDWHV F VHTXHQWLDO ERRWVWUDS
VDPSOHV �VWDQGDUG VHWWLQJ E ��� DQG VWRUHV WKH VXSSRUW RI WKH
HVWLPDWHV �̂� %�75(; SURYLGHV�

:H DLP DW YDULDEOH VHOHFWLRQ LQ OLQHDU UHJUHVVLRQ�
:H WKHUHIRUH FRQVLGHU PRGHOV RI WKH IRUP

ZKHUH < � RQ LV D UHVSRQVH YHFWRU� ; � RQ�S D GHVLJQ PDWUL[�
ı > � D FRQVWDQW� DQG İ � RQ D QRLVH YHFWRU�

Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Real-world example: Riboflavin production in B. subtilis
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Abstract
We review statistical methods for high-dimensional data analysis and pay
particular attention to recent developments for assessing uncertainties in
terms of controlling false positive statements (type I error) and p-values. The
main focus is on regression models, but we also discuss graphical modeling
and causal inference based on observational data. We illustrate the concepts
and methods with various packages from the statistical software R using a
high-throughput genomic data set about riboflavin production with Bacillus
subtilis, which we make publicly available for the first time.
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  
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Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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 Lasso−CV
 TREX
 B−TREX

Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .

Tuning parameters in
high-dimensional statistics
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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VDPSOHV �VWDQGDUG VHWWLQJ E ��� DQG VWRUHV WKH VXSSRUW RI WKH
HVWLPDWHV �̂� %�75(; SURYLGHV�

:H DLP DW YDULDEOH VHOHFWLRQ LQ OLQHDU UHJUHVVLRQ�
:H WKHUHIRUH FRQVLGHU PRGHOV RI WKH IRUP

ZKHUH < � RQ LV D UHVSRQVH YHFWRU� ; � RQ�S D GHVLJQ PDWUL[�
ı > � D FRQVWDQW� DQG İ � RQ D QRLVH YHFWRU�

Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Real-world example: Riboflavin production in B. subtilis

Can we identify a subset of genes 
that is related to riboflavin 
production?
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Abstract
We review statistical methods for high-dimensional data analysis and pay
particular attention to recent developments for assessing uncertainties in
terms of controlling false positive statements (type I error) and p-values. The
main focus is on regression models, but we also discuss graphical modeling
and causal inference based on observational data. We illustrate the concepts
and methods with various packages from the statistical software R using a
high-throughput genomic data set about riboflavin production with Bacillus
subtilis, which we make publicly available for the first time.
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High-dimensional linear regression
The scope for today is sparse,
high dimensional linear regression
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High-dimensional linear regression

We aim at variable selection in linear regression.
We therefore consider models of the form
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High-dimensional linear regression with LASSO

The Lasso
(Tibshirani ’96)

⇤� ⇥ argmin
�⇥Rp

�⇤Y � X�⇤2
2

n
+ ⇥⇤�⇤1
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High-dimensional linear regression with LASSO

The Lasso
(Tibshirani ’96)

⇤� ⇥ argmin
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2

n
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Likelihood term Sparsity
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High-dimensional linear regression with LASSO

L1 ball L2 ball (Tikhonov)
�β�22 < c�β�1 < c

β1

β2β2

β1
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Algorithmic approaches to solve the LASSO

• The LASSO is a non-smooth convex optimization problems 
• Many algorithms available (efficiency dependent on p and n) 
• Coordinate descent, Least-angle regression (LARS), projected 

sub-gradient, path-following algorithms (over lambda), warm-
start
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Evaluating estimator performance

Ŝ = support(β̂)
S = support(β�)

�Xβ� � Xβ̂�22/n
�β� � β̂�2/n

• Prediction error: 
• Estimation error: 
• Variable selection/

support recovery:

i.e. the set of non-zero entries

Hamm(S, Ŝ)
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Theoretical guarantees for the LASSO

• Extensive theoretical results known regarding estimation and 
prediction error with respect to sample complexity, variance, 
and design matrices (see Bühlmann and van de Geer, 2011) 

• Most basic result: Set 
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n log p)
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Theoretical guarantees for the LASSO

• Extensive theoretical results known regarding estimation and 
prediction error with respect to sample complexity, variance, 
and design matrices (see Bühlmann and van de Geer, 2011) 

• Most basic result: Set λ = O(σ
�
n log p)

1
n
�Xβ� � Xβ̂�22 = O(σ

�
log p
n

�β��1)
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and ���
1

�
XT

�S

�
I � XS(XT

S XS)�1XT
S

�
✏ + XT

�S(XT
S XS)�1sign(�

0,S)
���

1
< 1. (26)

Recalling that ✏ ⇠ N(0, �2I), we see that the two required conditions reduce to statements
about Gaussian processes, that can be analyzed with concentration of measure arguments.
These arguments can actually made rather simple, and will only use tail bounds of Gaussian
random variables, but we will need to make assumptions on X and �

0

. These are:

– Mutual incoherence: for some � > 0, we have

k(XT
S XS)�1XT

S Xjk1

 1 � �, for i /2 S,

– Minimum eigenvalue: for some C > 0, we have

⇤
min

⇣ 1

n
XT

S XS

⌘
� C,

where ⇤
min

(A) denotes the minimum eigenvalue of a matrix A

– Minimum signal:

|�
0,i| � �

⇣
k(XT

S XS)�1k1 +
4�

C

⌘
, for i 2 S,

where kAk1 = maxi=1,...m
Pq

j=1

|Aij | denotes the `1 norm of an m ⇥ q matrix A

Under these assumptions on X and �
0

, and with � � 2�
p

2n log p/�, one can check that (25)
and (26) hold with high probability, and hence the primal-dual witness method passes—i.e.,
the lasso solution is unique and recovers the exact support and signs—with high probability

• The mutual incoherence and minimum eigenvalue conditions are restrictions on the amount of
correlation present in the predictor variables. Mutual incoherence says that a variable in Sc

cannot be too correlated with a variable in S; the minimum eigenvalue condition says that the
variables in S cannot be too correlated with each other. A common theoretical pursuit is to
show that these hold with high probability under a random choice of X with respect to some
model, i.e., a Gaussian model for the entries of X

• The minimum signal condition ensures that the nonzero entries of the true coe�cient vector
�

0

are big enough to detect. Note that this is a restrictive condition and is not present in the
results on the lasso convergence rates in the previous section

• Finally, to be perfectly clear, the primal-dual witness method is not a practical algorithm for
finding a solution, because it requires knowledge of the true support and signs; it is instead a
theoretical routine that we can study to verify support and sign recovery. Also, it may seem
more natural to call it something like “primal-subgradient witness method”. However, the
subgradient s is related to the solution of the lasso dual problem

û = argmin
u2Rn

ky � uk2

2

subject to kXT uk1  �,

in that XT û = �s
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Theoretical guarantees for the LASSO

λ � 2σ
�
2n log p/γ

Under these conditions on the design X and predictors and 

then the LASSO will recover the correct support (and sign) 
with high probability.
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How do we find the correct regularization?

β̂i
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What do we do in practice with the LASSO?Three popular model selection choices

• k-fold cross-validation
• Information criteria (BIC,AIC,…) 
• Stability selection (based on subsampling, bootstrapping)
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How can we get rid of tuning? The TREX
The Lasso
(Tibshirani ’96)

⇤� ⇥ argmin
�⇥Rp

�⇤Y � X�⇤2
2

n
+ ⇥⇤�⇤1

⇥

Tuning the Lasso is difficult

⇥ �
⇤⌅X⇤�⌅⇥

n

LASSO

From theory we know:
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Tuning the Lasso is difficult
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⇤⌅X⇤�⌅⇥

n

LASSO

From theory we know:

Two questions today: What makes Lasso tuning
difficult and why can the Trex be a remedy?

�
⇥

From the Lasso to the Trex
(L. & Müller ’14)

⇤� ⇤ argmin
�⇤Rp

�
⇧Y � X�⇧2

2
1
2
⇧X⌅(Y � X�)⇧⇥

+ ⇧�⇧1

⇥

TREX
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Standard approach: The LASSO (Tibshirani, 1996) 

Novel proposition: The TREX  (Lederer and M., AAAI 2015) 
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How can we solve the TREX?
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'
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Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .

Tuning parameters in
high-dimensional statistics

Production rate Gene expressions

��

��

��

��

��

��

���� ���� ���� �����

��

Y = X�⇤ + �"

z ⇠ N (0,⌃)

SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Numerical illustration 
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Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''

0 10 20 30 40
0.05

0.1

0.15

0.2

0.25

0.3

Average number of predictors

A
ve

ra
ge

 C
V 

cl
as

si
fic

at
io

n 
er

ro
r

 

 
B−TREX
TREX
Lasso−CV
SIS
ISIS
Elastic Net
PED

0 100 200 300 400 500
−0.4

−0.2

0

0.2

Scan index

C
oe

ffi
ci

en
t v

al
ue

 

 

 
 Lasso−CV
 TREX
 B−TREX

Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Real-world example: Riboflavin production in B. subtilis

Can we identify a subset of genes that is related to 
riboflavin production?
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Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 

Lasso'

Tuning parameters in
high-dimensional statistics

Production rate Gene expressions

��

��

��

��

��

��

���� ���� ���� �����

��

Y = X�⇤ + �"

z ⇠ N (0,⌃)

entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�
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Numerical'solu@on'

Bootstrapped'TREX'(BRTREX)'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''

� D UREXVW VLQJOH VROXWLRQ XVLQJ PDMRULW\ YRWH�

� D UDQNHG OLVW RI YDULDEOHV EDVHG RQ IUHTXHQF\ RI RFFXUUHQFH�

%RRWVWUDSSHG 75(; �%�75(;� JHQHUDWHV F VHTXHQWLDO ERRWVWUDS
VDPSOHV �VWDQGDUG VHWWLQJ E ��� DQG VWRUHV WKH VXSSRUW RI WKH
HVWLPDWHV �̂� %�75(; SURYLGHV�

:H DLP DW YDULDEOH VHOHFWLRQ LQ OLQHDU UHJUHVVLRQ�
:H WKHUHIRUH FRQVLGHU PRGHOV RI WKH IRUP

ZKHUH < � RQ LV D UHVSRQVH YHFWRU� ; � RQ�S D GHVLJQ PDWUL[�
ı > � D FRQVWDQW� DQG İ � RQ D QRLVH YHFWRU�

Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Yes, we can!
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Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).

2

!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�
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Numerical'solu@on'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Thought experiment: Riboflavin production in B. subtilis



November 12, 2015::CERNHigh-dimensional regression

Poster'Print'Size:'
This'poster'template'is'36”'high'by'
36”'wide.'It'can'be'used'to'print'any'
poster'with'a'1:1'aspect'ra@o.'

Placeholders:'
The'various'elements'included'in'
this'poster'are'ones'we'oBen'see'in'
medical,'research,'and'scien@fic'
posters.'Feel'free'to'edit,'move,''
add,'and'delete'items,'or'change'
the'layout'to'suit'your'needs.'
Always'check'with'your'conference'
organizer'for'specific'requirements.'

Image'Quality:'
You'can'place'digital'photos'or'logo'
art'in'your'poster'file'by'selec@ng'
the'Insert,(Picture'command,'or'by'
using'standard'copy'&'paste.'For'
best'results,'all'graphic'elements'
should'be'at'least'1500200(pixels(
per(inch(in(their(final(printed(size.'
For'instance,'a'1600'x'1200'pixel'
photo'will'usually'look'fine'up'to'
8“R10”'wide'on'your'printed'poster.'
To'preview'the'print'quality'of'
images,'select'a'magnifica@on'of'
100%'when'previewing'your'poster.'
This'will'give'you'a'good'idea'of'
what'it'will'look'like'in'print.'If'you'
are'laying'out'a'large'poster'and'
using'halfRscale'dimensions,'be'sure'
to'preview'your'graphics'at'200%'to'
see'them'at'their'final'printed'size.'
Please'note'that'graphics'from'
websites'(such'as'the'logo'on'your'
hospital's'or'university's'home'page)'
will'only'be'72dpi'and'not'suitable'
for'prin@ng.'

'
[This'sidebar'area'does'not'print.]'

Change'Color'Theme:'
This'template'is'designed'to'use'the'
builtRin'color'themes'in'the'newer'
versions'of'PowerPoint.'
To'change'the'color'theme,'select'
the'Design'tab,'then'select'the'
Colors'dropRdown'list.'
'
'
'
'
'
'
'
'
'
The'default'color'theme'for'this'
template'is'“Office”,'so'you'can'
always'return'to'that'aBer'trying'
some'of'the'alterna@ves.'

Prin@ng'Your'Poster:'
Once'your'poster'file'is'ready,'visit'
www.genigraphics.com'to'order'a'
highRquality,'affordable'poster'
print.'Every'order'receives'a'free'
design'review'and'we'can'deliver'as'
fast'as'next'business'day'within'the'
US'and'Canada.''
Genigraphics®'has'been'producing'
output'from'PowerPoint®'longer'
than'anyone'in'the'industry;'da@ng'
back'to'when'we'helped'MicrosoB®'
design'the'PowerPoint®'soBware.''
'
US'and'Canada:''1R800R790R4001'
Email:'info@genigraphics.com'

'
[This'sidebar'area'does'not'print.]'

� 7KH GDWD�ILWWLQJ WHUP /(�) = ||=�<�||��
�
� ||<8(=�<�)||�

RI WKH QRQ�VPRRWK
75(; REMHFWLYH IXQFWLRQ I75(; = /(�) + ||�||� LV DSSUR[LPDWHG
E\ WKH VPRRWK WHUP /(�) = ||=�<�||��

�
� ||<8(=�<�)||T

�

� ,Q SUDFWLFH� IRU DQ\ T > ��� WKH IXQFWLRQ /(�) + ||�||� LV D
VXIILFLHQW DSSUR[LPDWLRQ WR I75(; DQG FDQ EH HIILFLHQWO\
PLQLPL]HG ZLWK SURMHFWHG VFDOHG VXE�JUDGLHQW DOJRULWKPV >�@�

Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�

TREX'objec@ve'

Numerical'solu@on'

Bootstrapped'TREX'(BRTREX)'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Thought experiment: Riboflavin production in B. subtilis

Image that only measured high (+1)/low(-1) production 
rate!
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Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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Riboflavin production in B. subtilis

(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the
paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:
Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard
deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).
We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),
and  = 0.9 (third column).
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!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b
�Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2
2

n

+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠ �kX

>
✏k1

n

.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX

>
✏k1/n, it holds

kX

b
�Lasso(�) � X�

⇤k2
2

n

 2�k�

⇤k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX

>
✏k1/n). In practice, however, the

corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b
�

p
Lasso(�) 2 argmin

�2Rp

⇢kY � X�k2p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠ kX

>
✏k1

n

,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b
�

p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �

but rather of the entire quantity of interest �kX

>
✏k1/n.

For this, note that if b
� is a consistent estimator of �

⇤,
then �kX

>
(Y � X

b
�)k1/n is a consistent estimator of

�kX

>
✏k1/n. In this spirit, we define TREX1 according to

b
�TREX 2 argmin

�2Rp

⇢ kY � X�k2
2

1
2kX

>
(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X�)k1

+ k�k1

such that kX

>
(Y � X�)k1  kX

>
Y k1

)

= min

0u2kX>Y k1/n

(
min

�2Rp

(
kY � X�k2

2

u

+ k�k1

such that
1

2

kX

>
(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b

� of �

⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠
�kX

>
✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �

⇤ and

e
� 2 argmin

�2Rp

(
kY � X�k2

2
1
2kX

>
(Y � X

b
�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�
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Numerical'solu@on'

Bootstrapped'TREX'(BRTREX)'
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58
YXLD at -0.206 YOAB at -0.168 YOAB at 0.52
ARGF at -0.191 ARGF at -0.112 YXLD at 0.52
XHLB at -0.138 YEBC at -0.088 YCKE at 0.45
YXLE at -0.105 YCKE at -0.069 LYSC at 0.42
YEBC at -0.105 YCGO at -0.065 XTRA at 0.42
LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42
YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35
YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32
DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29
YKBA at -0.043 YYDA at -0.015 YYDA at 0.29
YQJU at -0.041 YCDH at -0.015 ARGF at 0.26
GAPB at -0.035 YBFI at -0.007 RPLL at 0.26
YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26
YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26
YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26
YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes
with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated
coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the
associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and
the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of
riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression
profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with
varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088.
Along with these expression profiles, the associated standardized riboflavin log-production rates
Y � R71 have been measured. The main objective is now to identify a small set of genes that is
highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially
exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then
improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with
various tools from high-dimensional statistics, including causal modeling, covariance selection, and
Lasso based regression. We reproduce their regression results and compare them with the result
provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the
computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-
CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest
coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-
CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set
of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size
⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and
B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX
computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a
considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-
cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority
vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-
lection rules different from majority vote can be deduced from Table 2, where we list the selection
frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict
the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in
Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:
First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

Thought experiment: Riboflavin production in B. subtilis

Image that only measured high (+1)/low(-1) production 
rate!
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

Prob(yi|xi) =
1

1 + exp(�(�Txi))
(2)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity of the
weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class labels.
A common strategy is to augment the logistic loss with an L1 penalty:

fS(w, c) = f(w, c) + ⇥ ⇤w⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures 3 show typical examples of classification errors vs. sparsity pattern of
the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure 4a.
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

Prob(yi|xi) =
1

1 + exp(�(�Txi))
(2)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity of the
weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class labels.
A common strategy is to augment the logistic loss with an L1 penalty:

fS(w, c) = f(w, c) + ⇥ ⇤w⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures 3 show typical examples of classification errors vs. sparsity pattern of
the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure 4a.
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

Prob(yi|xi) =
1

1 + exp(�(�Txi))
(2)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity of the
weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class labels.
A common strategy is to augment the logistic loss with an L1 penalty:

fS(w, c) = f(w, c) + ⇥ ⇤w⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures 3 show typical examples of classification errors vs. sparsity pattern of
the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure 4a.
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the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
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where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by
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In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity
of the weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class
labels. A common strategy is to augment the logistic loss with an L1 penalty:

fS(�) = f(�) + ⇥ ⇤�⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures ?? show typical examples of classification errors vs. sparsity pattern
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After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure ??.
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

Prob(yi|xi) =
1

1 + exp(�(�Txi))
(2)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity of the
weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class labels.
A common strategy is to augment the logistic loss with an L1 penalty:

fS(w, c) = f(w, c) + ⇥ ⇤w⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures 3 show typical examples of classification errors vs. sparsity pattern of
the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure 4a.
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the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX
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log(1 + exp(�yi(w
Txi + c))) (2)

f(�) = 1/n
nX

i=1

log(1 + exp(�yi(�
Txi))) + ⇥ ⇤�⇤1 , (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity
of the weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class
labels. A common strategy is to augment the logistic loss with an L1 penalty:

fS(�) = f(�) + ⇥ ⇤�⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures ?? show typical examples of classification errors vs. sparsity pattern
of the weight vector.
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After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure ??.
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

Prob(yi|xi) =
1

1 + exp(�(�Txi))
(2)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity of the
weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class labels.
A common strategy is to augment the logistic loss with an L1 penalty:

fS(w, c) = f(w, c) + ⇥ ⇤w⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures 3 show typical examples of classification errors vs. sparsity pattern of
the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure 4a.
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Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (2)

f(�) = 1/n
nX
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log(1 + exp(�yi(�
Txi))) + ⇥ ⇤�⇤1 , (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity
of the weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class
labels. A common strategy is to augment the logistic loss with an L1 penalty:

fS(�) = f(�) + ⇥ ⇤�⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures ?? show typical examples of classification errors vs. sparsity pattern
of the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure ??.
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

Prob(yi|xi) =
1

1 + exp(�(�Txi))
(2)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity of the
weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class labels.
A common strategy is to augment the logistic loss with an L1 penalty:

fS(w, c) = f(w, c) + ⇥ ⇤w⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures 3 show typical examples of classification errors vs. sparsity pattern of
the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure 4a.
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3.1 Sparse logistic regression

Let us denote the Baugh data set by X ⇥ Rpxn where p = 106 is the number of features and n = 9477 denotes
the number of mutations. For each column (mutation) xi ⇥ X we have a binary class label yi ⇥ [�1, 1] where the
positive label indicates detrimental (null) mutation. All class labels are stored in the vector y ⇥ Rn. The standard
logistic regression model is given by

Prob(yi|xi) =
1

1 + exp(�(wTxi + c))
(1)

where Prob(yi|xi) is the conditional probability of label yi given the sample xi. The vector w ⇥ Rp is the weight
vector, and c ⇥ R is the intercept. The equation wTxi + c = 0 defines a hyperplane in feature space, on which
Prob(yi|xi) = 0.5. Given a list of training data {xi, yi}mi=1 the associated negative log-likelihood of the data (also
called the logistic loss) is given by

f(w, c) = 1/m
mX

i=1

log(1 + exp(�yi(w
Txi + c))) (2)

f(�) = 1/n
nX

i=1

log(1 + exp(�yi(�
Txi))) + ⇥ ⇤�⇤1 , (3)

In sparse logistic regression we seek a minimum of this loss function while simultaneously promoting sparsity
of the weight vector w. Sparsity of the weight vector implies that only a few features are used to predict the class
labels. A common strategy is to augment the logistic loss with an L1 penalty:

fS(�) = f(�) + ⇥ ⇤�⇤1 , (4)

where ⇤ · ⇤1 denotes the L1 norm and ⇥ > 0 is a tuning parameter. For any fixed ⇥ the convex non-smooth loss
fS(w, c) can be e⇥ciently solved using projected sub-gradient methods.

3.2 Feature selection using sparse logistic regression

We here present our strategy to learn a sparse logistic model for the Baugh data set. We first split the data set
into 80% training and 20% test set. All splits and percentages are with respect to proteins, not mutations. This
ensures that mutations of any single protein are only in the training or the test set. We perform r = 100 random
splits with this ratio. For each training set we fit a sparse logistic model over the entire lambda path ⇥ ⇥ [0,⇥max].
We select the ⇥ whose corresponding logistic model (parameterized by weight vector w� and o�set c�) minimizes
the prediction error on the test set. Figures ?? show typical examples of classification errors vs. sparsity pattern
of the weight vector.

(a) Typical ⇥-path on training set (b) Typical ⇥-path on test set

Figure 3: Classification error vs. sparsity of w along the entire � path

After model selection we record the non-zero indices of the selected w�. The typical size of the non-zero support
of w� set is around 20-40. Using this procedure we can quantify the likelihood of each feature being in the support
of the classifier with the lowest misclassification error. The resulting selection frequency are shown in Figure ??.
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T his article reviews recent advances in convex opti-
mization algorithms for big data, which aim to 
reduce the computational, storage, and communica-
tions bottlenecks. We provide an overview of this 
emerging field, describe contemporary approxima-

tion techniques such as first-order methods and randomization 
for scalability, and survey the important role of parallel and dis-
tributed computation. The new big data algorithms are based on 
surprisingly simple principles and attain staggering accelera-
tions even on classical problems. 

CONVEX OPTIMIZATION IN THE WAKE OF BIG DATA
Convexity in signal processing dates back to the dawn of the 
field, with problems like least squares (LS) being ubiquitous 
across nearly all subareas. However, the importance of convex 
formulations and optimization has increased even more dra-
matically in the last decade due to the rise of new theory for 
structured sparsity and rank minimization, and successful sta-
tistical learning models such as support vector machines. These 
formulations are now employed in a wide variety of signal pro-
cessing applications including compressive sensing, medical 
imaging, geophysics, and bioinformatics [1]–[4]. 

There are several important reasons for this explosion of 
interest, with two of the most obvious being the existence of 
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for big data analytics]
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What if p and n are really large? CoCoA

“Communication-Efficient Distributed Block-Coordinate Ascent”

CoCoA+ paper (ICML 2015)  

CoCoA paper (NIPS 2014)

prox CoCoA / primal CoCoA: on arXiv soon

           code is available on github

Martin Jaggi, Simone Forte, Virginia Smith,  
Martin Takáč, Chenxin Ma, Tribhuvanesh Orekondy, 
Aurelien Lucchi, Peter Richtarik, Thomas Hofmann, 

Michael I. Jordan
slides adapted from M. Jaggi

http://arxiv.org/abs/1502.03508
http://arxiv.org/abs/1409.1458
http://www.github.com/gingsmith/cocoa
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Machine Learning Applications

Classification
Support Vector Machine (SVM)
         (reg.: L1, L2, elastic-net)
Logistic Regression
         (reg.: L1, L2, elastic-net)

Structured Prediction
         (reg.: L1, L2, elastic-net)

Regression
Least Squares
         (reg.: L1, L2, elastic-net)

CoCoA+ 
          D = dual

prox CoCoA+ 
          D = dual

primal prox CoCoA+ 
          D = primal

L1: get bounded support!

slides adapted from M. Jaggi
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6 Experiments

In this section, we compare COCOA to traditional mini-batch versions of stochastic dual coordinate
ascent and stochastic gradient descent, as well as the locally-updating version of stochastic gradient
descent. We implement mini-batch SDCA (denoted mini-batch-CD) as described in [3, 1]. The
SGD-based methods are mini-batch and locally-updating versions of Pegasos [13], differing only in
whether the primal vector is updated locally on each inner iteration or not, and whether the resulting
combination/communication of the updates is by an average over the total size KH of the mini-
batch (mini-batch-SGD) or just over the number of machines K (local-SGD). For each algorithm,
we additionally study the effect of scaling of the average by a parameter �K , as first described in [3],
while noting that it is a benefit to avoid having to tune this data-dependent parameter.

We apply these algorithms to standard hinge loss `2-regularized support vector machines, using
implementations written in Spark on m1.large Amazon EC2 instances [10]. Though this non-smooth
case is not yet covered in our theoretical analysis, we still see remarkable empirical performance.
Our results indicate that COCOA is able to converge to .001-accurate solutions nearly 25⇥ as fast
compared the other algorithms, when all use �K = 1. The datasets used in these analyses are
summarized in Table 1, and were distributed among K = 4, 8, and 32 nodes, respectively. We use
the same regularization parameters as specified in [13, 14].

Table 1: Datasets for Empirical Study

Dataset Training n Features d Sparsity � Workers K
cov 522,911 54 22.22% 1e-6 4
rcv1 677,399 47,236 0.16% 1e-6 8
imagenet 32,751 160,000 100% 1e-5 32

In comparing each algorithm and dataset, we analyze the progress in primal objective value as a
function of both time (Figure 1) and communication (Figure 2). For all competing methods, we
present the result for the batch size (H) yielding the best performance in terms of reduction in
objective value over time. For the locally-updating methods (COCOA and local-SGD), these tend
to be larger batch sizes corresponding to processing almost all of the local data at each outer step.
For the non-locally updating mini-batch methods, (mini-batch SDCA [3] and mini-batch SGD [13]),
these typically perform best for smaller values of H , as averaging the solutions to guarantee safe
convergence becomes less of an impediment.

First, we note that there is a clear correlation between the wall-time spent processing each dataset
and the number of vectors communicated, indicating that communication has a significant effect on
convergence speed. We see clearly that COCOA is able to converge to a more accurate solution in all
datasets much faster than the other methods. On average, COCOA reaches a .001-accurate solution
for these datasets 25x faster than the best competitor. This is a testament to the algorithm’s ability
to avoid communication while still making significant global progress by efficiently combining the
local updates of each iteration. The improvements are robust for both regimes n � d and n ⌧ d.
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Figure 1: Primal Suboptimality vs. Time for Best Mini-Batch Sizes (H): For �K = 1, COCOA converges
more quickly than all other algorithms, even when accounting for different batch sizes.

In Figure 3 we explore the effect of H on the convergence of COCOA for the cov dataset on a
cluster of 4 nodes. As described above, increasing H decreases communication but also affects the
convergence properties of the algorithm. In Figure 4, we attempt to scale the averaging step of each
algorithm by using various �K values, for two different batch sizes on the Cov dataset (H = 1e5
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6 Experiments

In this section, we compare COCOA to traditional mini-batch versions of stochastic dual coordinate
ascent and stochastic gradient descent, as well as the locally-updating version of stochastic gradient
descent. We implement mini-batch SDCA (denoted mini-batch-CD) as described in [3, 1]. The
SGD-based methods are mini-batch and locally-updating versions of Pegasos [13], differing only in
whether the primal vector is updated locally on each inner iteration or not, and whether the resulting
combination/communication of the updates is by an average over the total size KH of the mini-
batch (mini-batch-SGD) or just over the number of machines K (local-SGD). For each algorithm,
we additionally study the effect of scaling of the average by a parameter �K , as first described in [3],
while noting that it is a benefit to avoid having to tune this data-dependent parameter.

We apply these algorithms to standard hinge loss `2-regularized support vector machines, using
implementations written in Spark on m1.large Amazon EC2 instances [10]. Though this non-smooth
case is not yet covered in our theoretical analysis, we still see remarkable empirical performance.
Our results indicate that COCOA is able to converge to .001-accurate solutions nearly 25⇥ as fast
compared the other algorithms, when all use �K = 1. The datasets used in these analyses are
summarized in Table 1, and were distributed among K = 4, 8, and 32 nodes, respectively. We use
the same regularization parameters as specified in [13, 14].

Table 1: Datasets for Empirical Study

Dataset Training n Features d Sparsity � Workers K
cov 522,911 54 22.22% 1e-6 4
rcv1 677,399 47,236 0.16% 1e-6 8
imagenet 32,751 160,000 100% 1e-5 32

In comparing each algorithm and dataset, we analyze the progress in primal objective value as a
function of both time (Figure 1) and communication (Figure 2). For all competing methods, we
present the result for the batch size (H) yielding the best performance in terms of reduction in
objective value over time. For the locally-updating methods (COCOA and local-SGD), these tend
to be larger batch sizes corresponding to processing almost all of the local data at each outer step.
For the non-locally updating mini-batch methods, (mini-batch SDCA [3] and mini-batch SGD [13]),
these typically perform best for smaller values of H , as averaging the solutions to guarantee safe
convergence becomes less of an impediment.

First, we note that there is a clear correlation between the wall-time spent processing each dataset
and the number of vectors communicated, indicating that communication has a significant effect on
convergence speed. We see clearly that COCOA is able to converge to a more accurate solution in all
datasets much faster than the other methods. On average, COCOA reaches a .001-accurate solution
for these datasets 25x faster than the best competitor. This is a testament to the algorithm’s ability
to avoid communication while still making significant global progress by efficiently combining the
local updates of each iteration. The improvements are robust for both regimes n � d and n ⌧ d.

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Cov

Time (s)

L
o
g
 P

ri
m

a
l S

u
b
o
p
tim

a
lit

y

 

 

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Cov

COCOA (H=1e6)
mini−batch−CD (H=100)
local−SGD (H=1e6)
mini−batch−SGD (H=1)

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

10
2

RCV1

Time (s)

L
o
g
 P

ri
m

a
l S

u
b
o
p
tim

a
lit

y

 

 

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

10
2

COCOA (H=1e6)
mini−batch−CD (H=100)
local−SGD (H=1e5)
mini−batch−SGD (H=100)

0 200 400 600 800
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

Time (s)

L
o
g
 P

ri
m

a
l S

u
b
o
p
tim

a
lit

y

 

 

0 200 400 600 800
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

COCOA (H=1e3)
mini−batch−CD (H=1)
local−SGD (H=1e3)
mini−batch−SGD (H=10)

Figure 1: Primal Suboptimality vs. Time for Best Mini-Batch Sizes (H): For �K = 1, COCOA converges
more quickly than all other algorithms, even when accounting for different batch sizes.

In Figure 3 we explore the effect of H on the convergence of COCOA for the cov dataset on a
cluster of 4 nodes. As described above, increasing H decreases communication but also affects the
convergence properties of the algorithm. In Figure 4, we attempt to scale the averaging step of each
algorithm by using various �K values, for two different batch sizes on the Cov dataset (H = 1e5

7

Experiments

Time<800s

p

Note that n>p possible

slides adapted from M. Jaggi



November 12, 2015::CERNHigh-dimensional regression

Biology  
Protein structure &  
function  
prediction

Vision  
2d+3d Segmentation, OCR

Text 
• Parsing 
• POS tagging
• sentence alignment

• entity linking

more? 
• Scene understanding
• object localization & recog.

Applications:Dissolve struct

Block Coordinate 

Frank-Wolfe

CoCoA

Distributed Optimization

Structured SVM solver

Your Application?

A Library for Distributed Structured Prediction  
 
built on

+

Open Source 
Approximate Inference allowed! 

drop-in replacement for SVMstruct

dalab.github.io/dissolve-struct/slides adapted from M. Jaggi

https://github.com/dalab/distributed-ML-benchmark
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Further extension: Structured prediction to 
include your physics knowledge
• Special regularization norms when more is known about 

the variables  
• Examples include Group LASSO, Sparse Group LASSO, 

Sparse Overlapping Group LASSO, Tree-guided LASSO 
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How can we construct dependency graphs among 
variables in the p>>n regime?
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The underdetermined regime: p>>n

Sample correlation matrix: n=100

• A synthetic example: Sampling from  a multivariate 
normal distribution (MVN)  

• We draw n=100,...,2000 samples from a p=600 
dimensional normal distribution with zero correlation 
among the variables  

True correlation matrix
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The p>>n problem

Spurious correlations vanish with increasing sample size 

True correlation matrixn=1000 n=2000

n=500n=100
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Conditional independence and sparsity 
David MacKay’s Gaussian Quiz.  Assume a simple system of 
springs where you observe the position x of the five masses:

x1 x2 x3 x4 x5
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Node-wise regression: Use each column as 
response

Aug 11, 2014::SCDASparse Estimation

Three statistical problems in systems biology

From regression to network learning
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Node-wise regression/ neighborhood selection 

The Annals of Statistics
2006, Vol. 34, No. 3, 1436–1462
DOI: 10.1214/009053606000000281
© Institute of Mathematical Statistics, 2006

HIGH-DIMENSIONAL GRAPHS AND VARIABLE SELECTION
WITH THE LASSO

BY NICOLAI MEINSHAUSEN AND PETER BÜHLMANN

ETH Zürich

The pattern of zero entries in the inverse covariance matrix of a multivari-
ate normal distribution corresponds to conditional independence restrictions
between variables. Covariance selection aims at estimating those structural
zeros from data. We show that neighborhood selection with the Lasso is
a computationally attractive alternative to standard covariance selection for
sparse high-dimensional graphs. Neighborhood selection estimates the con-
ditional independence restrictions separately for each node in the graph and
is hence equivalent to variable selection for Gaussian linear models. We show
that the proposed neighborhood selection scheme is consistent for sparse
high-dimensional graphs. Consistency hinges on the choice of the penalty pa-
rameter. The oracle value for optimal prediction does not lead to a consistent
neighborhood estimate. Controlling instead the probability of falsely joining
some distinct connectivity components of the graph, consistent estimation for
sparse graphs is achieved (with exponential rates), even when the number of
variables grows as the number of observations raised to an arbitrary power.

1. Introduction. Consider the p-dimensional multivariate normal distributed
random variable

X = (X1, . . . ,Xp)∼N (µ,!).

This includes Gaussian linear models where, for example, X1 is the response vari-
able and {Xk;2≤ k ≤ p} are the predictor variables. Assuming that the covariance
matrix ! is nonsingular, the conditional independence structure of the distrib-
ution can be conveniently represented by a graphical model G = (",E), where
" = {1, . . . , p} is the set of nodes and E the set of edges in " × ". A pair (a, b)
is contained in the edge set E if and only if Xa is conditionally dependent on Xb,
given all remaining variables X"\{a,b} = {Xk;k ∈ " \ {a, b}}. Every pair of vari-
ables not contained in the edge set is conditionally independent, given all remain-
ing variables, and corresponds to a zero entry in the inverse covariance matrix [12].

Covariance selection was introduced by Dempster [3] and aims at discovering
the conditional independence restrictions (the graph) from a set of i.i.d. observa-
tions. Covariance selection traditionally relies on the discrete optimization of an
objective function [5, 12]. Exhaustive search is computationally infeasible for all

Received May 2004; revised August 2005.
AMS 2000 subject classifications. Primary 62J07; secondary 62H20, 62F12.
Key words and phrases. Linear regression, covariance selection, Gaussian graphical models, pe-

nalized regression.
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Theoretical results about exact conditions on when 
recovery is possible! 
Knowledge of optimal lambda is necessary
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Sparse graphical model inference (GLASSO)

• Sparsity of the underlying network means that the inverse 
C-1 of the correlation (covariance) matrix C is sparse: 
sparse Gaussian graphical model.  

• Given: the sample correlation (covariance) matrix S  
• Goal: Finding a sparse C-1 by convex optimization
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sparse Gaussian graphical model.  

• Given: the sample correlation (covariance) matrix S  
• Goal: Finding a sparse C-1 by convex optimization

Likelihood term Sparsity term



November 12, 2015::CERNHigh-dimensional regression

Efficient algorithms exist for this optimization 
problem even in very high dimensions
• Neighborhood selection (Meinshausen and Buehlmann, 

2006)  
• Graphical LASSO (Yuan et al., 2007, Friedman et al. 

2008,2011) 
• Alternating Linearization (Scheinberg et al., 2010), 

QUadratic Inverse Covariance (Hsieh et al, 2010)  
• Beautiful theoretical results! 
• Extensions to non-normal data through non-parametric 

approaches 
• Scalable to very high dimensions (BIG and QUiC...)
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Further reading with theoretical results

Electronic Journal of Statistics
Vol. 5 (2011) 935–980
ISSN: 1935-7524
DOI: 10.1214/11-EJS631

High-dimensional covariance estimation

by minimizing ℓ1-penalized

log-determinant divergence

Pradeep Ravikumar, Martin J. Wainwright,

Garvesh Raskutti and Bin Yu

Berkeley, CA 94720-1776 USA
e-mail: pradeepr@stat.berkeley.edu

wainwrig@stat.berkeley.edu
garveshr@stat.berkeley.edu
binyu@stat.berkeley.edu

Abstract: Given i.i.d. observations of a random vector X ∈ Rp, we study
the problem of estimating both its covariance matrix Σ∗, and its inverse
covariance or concentration matrix Θ∗ = (Σ∗)−1. When X is multivari-
ate Gaussian, the non-zero structure of Θ∗ is specified by the graph of
an associated Gaussian Markov random field; and a popular estimator for
such sparse Θ∗ is the ℓ1-regularized Gaussian MLE. This estimator is sen-
sible even for for non-Gaussian X, since it corresponds to minimizing an
ℓ1-penalized log-determinant Bregman divergence. We analyze its perfor-
mance under high-dimensional scaling, in which the number of nodes in
the graph p, the number of edges s, and the maximum node degree d, are
allowed to grow as a function of the sample size n. In addition to the pa-
rameters (p, s, d), our analysis identifies other key quantities that control
rates: (a) the ℓ∞-operator norm of the true covariance matrix Σ∗; and (b)
the ℓ∞ operator norm of the sub-matrix Γ∗

SS , where S indexes the graph
edges, and Γ∗ = (Θ∗)−1 ⊗ (Θ∗)−1; and (c) a mutual incoherence or irrep-
resentability measure on the matrix Γ∗ and (d) the rate of decay 1/f(n, δ)

on the probabilities {|Σ̂n
ij − Σ∗

ij | > δ}, where Σ̂n is the sample covariance
based on n samples. Our first result establishes consistency of our estimate
Θ̂ in the elementwise maximum-norm. This in turn allows us to derive con-
vergence rates in Frobenius and spectral norms, with improvements upon
existing results for graphs with maximum node degrees d = o(

√
s). In our

second result, we show that with probability converging to one, the esti-
mate Θ̂ correctly specifies the zero pattern of the concentration matrix Θ∗.
We illustrate our theoretical results via simulations for various graphs and
problem parameters, showing good correspondences between the theoretical
predictions and behavior in simulations.

AMS 2000 subject classifications: Primary 62F12; secondary 62F30.
Keywords and phrases: Covariance, concentration, precision, sparsity,
Gaussian graphical models, ℓ1 regularization.

Received January 2010.

1. Introduction

The area of high-dimensional statistics deals with estimation in the “large p,
small n” setting, where p and n correspond, respectively, to the dimensional-
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Graph recovery performance depends on graph topology 
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Neighborhood selection with the TREX (GTREX)

• Replace the LASSO with the standard TREX estimator 
• Bootstrapping the TREX estimator to get edge 

probabilities 
• Compare estimators using varying graph topologies

Topology Adaptive Graph Estimation in High Dimensions

Johannes Lederer Christian L. Müller
Cornell University Simons Center for Data Analysis, Simons Foundation

Abstract

We introduce Graphical TREX (GTREX),
a novel method for graph estimation in
high-dimensional Gaussian graphical models.
By conducting neighborhood selection with
TREX, GTREX avoids tuning parameters
and is adaptive to the graph topology. We
compare GTREX with standard methods on
a new simulation set-up that is designed to
assess accurately the strengths and shortcom-
ings of di↵erent methods. These simulations
show that a neighborhood selection scheme
based on Lasso and an optimal (in prac-
tice unknown) tuning parameter outperforms
other standard methods over a large spec-
trum of scenarios. Moreover, we show that
GTREX can rival this scheme and, there-
fore, can provide competitive graph estima-
tion without the need for tuning parameter
calibration.

1 INTRODUCTION

Graphical models [Lauritzen, 1996] have become an
important tool to find and describe patterns in high-
dimensional data. In biology, for example, graphi-
cal models have been successfully applied to estimate
interactions between genes from high-throughput ex-
pression profiles [Wille et al., 2004, Friedman, 2004],
to predict contacts between protein residues from mul-
tiple sequence alignments [Jones et al., 2012], and to
uncover interactions of microbes from gene sequencing
data [Kurtz et al., 2014]. Graphical models represent
the conditional dependence structure of the underly-
ing random variables as a graph. Learning a graphi-
cal model from data requires a simultaneous estima-
tion of the graph and of the probability distribution
that factorizes according to this graph. In the Gaus-
sian case, it is well known that the underlying graph

is determined by the non-zero entries of the precision
matrix (the inverse of the population covariance ma-
trix). Gaussian graphical models have become par-
ticularly popular after the advent of computationally
e�cient approaches, such as neighborhood selection
[Meinshausen and Bühlmann, 2006] and sparse covari-
ance estimation [Banerjee et al., 2008, Yuan and Lin,
2007], that can learn even high-dimensional graphi-
cal models. Neighborhood selection, on the one hand,
reconstructs the graph by estimating the local neigh-
borhood of each node via the Lasso [Tibshirani, 1996].
This approach is usually seen as a proxy to the co-
variance selection problem [Friedman et al., 2008]. On
the other hand, [Banerjee et al., 2008] and [Yuan and
Lin, 2007] showed that the graph and the precision
matrix can be simultaneously estimated by solving a
global optimization problem. State-of-the-art solvers
are the Graphical Lasso [Friedman et al., 2008] and
the Quadratic Approximation of Inverse Covariance
(QUIC) method [Hsieh et al., 2011]. Both approaches
can be extended beyond the framework of Gaussian
graphical models. To mention two of the many ex-
amples, [Ravikumar et al., 2010] study neighborhood
selection for Ising models, and [Liu et al., 2009] intro-
duce a semi-parametric penalized likelihood estimator
that allows for non-Gaussian distributions of the data.

Although the field has advanced tremendously in the
past decade, there are still a number of challenges,
both from a practical and a theoretical point of view.
First, the conditions that are currently imposed [Mein-
shausen and Bühlmann, 2006, Ravikumar et al., 2010,
Lam and Fan, 2009, Ravikumar et al., 2011] to show
consistency in graph and/or graphical model estima-
tion are di�cult to meet or verify in practice. More-
over, the performance of any of the standard methods
heavily depends on the simulation set-up or the data at
hand [Liu and Ihler, 2011, Liu and Wang, 2012, Kurtz
et al., 2014]. Furthermore, standard neighborhood se-
lection and covariance estimation methods require a
careful calibration of a tuning parameter, especially
because the model complexity is known a priori only
in very few examples [Jones et al., 2012]. In prac-
tice, the tuning parameters are calibrated via cross-
validation, classical information criteria such as AIC
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Figure 1: Hamming distances of the true graphs to GLASSO, MB(or), and MB(and) with optimal tuning
parameter �⇤ and to GTREX as a function of the sample size n. In the top row, examples of the corresponding
graphs are displayed.

the degree of node j 2 V (that is, the number of edges
at node j) in the current set of edges. Until the num-
ber of edges k is exhausted, edges are then uniformly
at random added to E .

Given a graph G that consists of a set of nodes V and
a set of edges E as described above, a precision ma-
trix ⌃-1 is generated as follows: The set of edges E
determines which o↵-diagonal entries of the precision
matrix ⌃-1 are non-zero. The values of these entries
are independently sampled uniformly at random in
[�amax,�amin] [ [amin, amax] for some amax > amin >
0. The diagonal entries of ⌃-1 are then set to a com-
mon value, which is chosen to ensure a given condition
number cond := cond(⌃-1) (the ratio of the largest
eigenvalue to the smallest eigenvalue of ⌃-1).

4 NUMERICAL RESULTS

We performed all numerical computations in MAT-
LAB 2014a on a standard MacBook Pro with 2.8GHz
Dual-core Intel i7 and 16GB 1600MHz DDR3 memory.
To compute the GLASSO paths, we use the C imple-
mentation of the QUIC algorithm and the correspond-
ing MATLAB wrapper [Hsieh et al., 2011]. We set the
maximum number of iterations to 200, which ensures
the global convergence of the algorithm in our settings.

To compute the Lasso paths for the neighborhood se-
lection schemes, we use the MATLAB-internal pro-
cedure lasso.m, which follows the popular glmnet R
code. We implemented a neighborhood selection wrap-
per mblasso.m that returns the graph traces over the
entire path for the “and-rule” and the “or-rule.” Both
for GLASSSO and neighborhood selection, we use a
fine grid of step size 0.01 on the unit interval for the
tuning parameter �, resulting in a path over 100 values
of �. To compute TREX, we optimize the approximate
TREX objective function with q = 40 using Schmidt’s
PSS algorithm implemented in L1General2 PSSgb.m.
We use the PSS algorithm with the standard param-
eter settings and set the initial solution to the parsi-
monious all-zeros vector �init = (0, . . . , 0)> 2 Rp. We
use the following PSS stopping criteria: minimum rel-
ative progress tolerance optTol=1e-7, minimum gradi-
ent tolerance progTol=1e-9, and maximum number of
iterations maxIter = 0.2p. We implemented a wrap-
per gtrex.m that integrates the node-wise TREX so-
lutions and returns the frequency table for each edge
and the resulting graph estimate. We use b = 31
bootstrap samples in B-TREX; increasing the num-
ber of bootstraps did not result in significant changes
of the GTREX solutions. The generation of the graphs
and precision matrices is implemented in our new
MATLAB toolbox GMG (Graphical Model Genera-
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Microbial interaction networks

?
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The scales of our micro-universe
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Large-scale efforts in 16S rRNA sequencing 
in microbiology 
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The network of interactions between the different 
microbes (and the host) is sparse.
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Key hypothesis for network inference

The network of interactions between the different 
microbes (and the host) is sparse.

  Dense network   Sparse network 

Build the most parsimonious network model that 
explains the data accurately and robustly.  
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SPIEC-EASI learns parsimonious direct microbial 
interaction networks from data

Sparse InversE Covariance 
Estimation for  

Ecological ASsociation 
Inference
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SPIEC-EASI learns parsimonious direct microbial 
interaction networks from data

OTU data

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

Synthetic Dataset (Graph band, κ = 100)

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

Synthetic Dataset (Graph cluster, κ = 100)

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

Synthetic Dataset (Graph scale free, κ = 100)

 

 

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

Synthetic Dataset (Graph band, κ = 10)

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

Synthetic Dataset (Graph cluster, κ = 10)

 

 

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

Synthetic Dataset (Graph scale free, κ = 10)

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Samples

O
TU

s

American Gut Data

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

Sparse InversE Covariance 
Estimation for  

Ecological ASsociation 
Inference



November 12, 2015::CERNHigh-dimensional regression

SPIEC-EASI learns parsimonious direct microbial 
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OTU data
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Sparse and Compositionally Robust Inference
of Microbial Ecological Networks
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Abstract
16S ribosomal RNA (rRNA) gene and other environmental sequencing techniques provide
snapshots of microbial communities, revealing phylogeny and the abundances of microbial
populations across diverse ecosystems. While changes in microbial community structure
are demonstrably associated with certain environmental conditions (from metabolic and im-
munological health in mammals to ecological stability in soils and oceans), identification of
underlying mechanisms requires new statistical tools, as these datasets present several
technical challenges. First, the abundances of microbial operational taxonomic units
(OTUs) from amplicon-based datasets are compositional. Counts are normalized to the
total number of counts in the sample. Thus, microbial abundances are not independent, and
traditional statistical metrics (e.g., correlation) for the detection of OTU-OTU relationships
can lead to spurious results. Secondly, microbial sequencing-based studies typically mea-
sure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU
association networks is severely under-powered, and additional information (or assump-
tions) are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE
Covariance Estimation for Ecological Association Inference), a statistical method for the in-
ference of microbial ecological networks from amplicon sequencing datasets that ad-
dresses both of these issues. SPIEC-EASI combines data transformations developed for
compositional data analysis with a graphical model inference framework that assumes the
underlying ecological association network is sparse. To reconstruct the network, SPIEC-
EASI relies on algorithms for sparse neighborhood and inverse covariance selection. To
provide a synthetic benchmark in the absence of an experimentally validated gold-standard
network, SPIEC-EASI is accompanied by a set of computational tools to generate OTU
count data from a set of diverse underlying network topologies. SPIEC-EASI outperforms
state-of-the-art methods to recover edges and network properties on synthetic data under a
variety of scenarios. SPIEC-EASI also reproducibly predicts previously unknown microbial
associations using data from the American Gut project.
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Large-scale learning of microbial interaction 
networks across multiple habitats

We collected >300 16S rRNA data 
sets with sufficient sample size across 
multiple habitats (gut, oral, skin, fresh 
water, soil, sea water, ) 

We focus on 301 networks of sufficient size (Number of edges 
m > 50)

The data set comprises >10^5 different OTUs from >10^4 
samples
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Visualization of the inferred interaction networks
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Key questions for ecological network analysis

Can we find network properties that are common 
to all (or most) networks across habitats?

How do microbial ecological network relate to other 
ecological networks (food webs, etc.)?
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Key questions for ecological network analysis

Can we find network properties that are common 
to all (or most) networks across habitats?

How do microbial ecological network relate to other 
ecological networks (food webs, etc.)?

Is there a simple generative network model that fits 
the inferred networks? 

From an evolutionary perspective: are there co-
evolutionary models that can explain the networks?
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Summary

Reviewed LASSO and introduced the (tuning-free) 
TREX for regression and variable selection

Showed how to use these methods for dependency 
graph recovery

Proposed SPIEC-EASI for inference of microbial 
interactions from 16S rRNA abundance data

Pointed to implementation and useful extensions
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What can sparse learning do for HEP?

Let’s discuss this today and tomorrow!
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The TREX team

Johannes Lederer, UW    Jacob Bien, Cornell     Irina Gaynanova, Texas A&M
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The SPIEC-EASI team 

Zachary Kurtz, 
Emily Miraldi 

Rich Bonneau Martin Blaser Dan Littman
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