Scaling Gaussian Processes and the search for exoplanets

Dan Foreman-Mackey
Sagan Fellow, University of Washington
github.com/dfm // @exoplaneteer // dfm.io

Dan Foreman-Mackey
Sagan Fellow, University of Washington github.com/dfm // @exoplaneteer // dfm.io

| study astronomy.

Photo credit NASA Ames/SETI Institute/JPL-Caltech
this isn't what my data look like

I study astronomy.

I do data science...

this is not what my data science looks like.

this is what my data science looks like.
$f a r(a), \omega \in \Delta$.
Cox (a). w A

convince you that
 exoplanets are cool

convince you that
 exoplanets are cool

demonstrate some
sick Python code

Why Astronomy?

simple but interesting physical models

precise open-access data
observational only

Why Astronomy?

simple but interesting physical models

precise open-access data

observational only

no chance of financial gain ever

ex•o•plan•et

'eksō,planət/
noun. a planet that orbits a star outside the solar system.

How do we find \& study exoplanets?

1307 transit

644 radial velocity 48 direct imaging
37 microlensing
24 timing
0 astrometry

the transit method

Earth
that's not what most stars look like!

everything is against us!

need to look at the right place at the right time

and measure extremely precise
photometry

Kepler

H N且
为

Kepler-32

Kepler-32

Credit Fabrycky et al. (2012)

that looks pretty good...

The anatomy of a transit observation

Standard practice: Filtering

Exoplanets are hard to find

Figure credit: Petigura, Howard \& Marcy (2013)

What about Gaussian Processes?

gaussianprocess.org/gpml

Rasmussen \& Williams

Modeling a light curve using a Gaussian Processes

Modeling a light curve using a Gaussian Processes

Modeling a light curve using a Gaussian Processes

What is a Gaussian Process?

the data are drawn from one

* the dimension is the number of data points.

The mathematical model

$$
\boldsymbol{y} \sim \mathcal{N}\left(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}), K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})\right)
$$

where

$$
\left[K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})\right]_{i j}={\sigma_{i}}^{2} \delta_{i j}+k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)
$$

The mathematical model

$$
\begin{aligned}
\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\sigma}, \boldsymbol{\theta}, \boldsymbol{\alpha})= & -\frac{1}{2}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right]^{\mathrm{T}} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})^{-1}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right] \\
& -\frac{1}{2} \log \operatorname{det} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

where

$$
\left[K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})\right]_{i j}={\sigma_{i}}^{2} \delta_{i j}+k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)
$$

The mathematical model

$$
\begin{aligned}
\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\sigma}, \boldsymbol{\theta}, \boldsymbol{\alpha})= & -\frac{1}{2}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right]^{\mathrm{T}} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})^{-1}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right] \\
& -\frac{1}{2} \log \operatorname{det} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

where

$$
\left[K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})\right]_{i j}=\sigma_{i}{ }^{2} \delta_{i j}+\underbrace{k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)}_{\begin{array}{c}
\text { kernel function } \\
\text { (where the magic happens) }
\end{array}}
$$

The choice of kernel

$$
k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)=\exp \left(-\frac{\left[x_{i}-x_{j}\right]^{2}}{2 \ell^{2}}\right)
$$

The choice of kernel

$$
k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)=\exp \left(-\frac{\left[x_{i}-x_{j}\right]^{2}}{2 \ell^{2}}\right)
$$

The choice of kernel

$$
k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)=\left[1+\frac{\sqrt{3}\left|x_{i}-x_{j}\right|}{\ell}\right] \exp \left(-\frac{\left|x_{i}-x_{j}\right|}{\ell}\right) \cos \left(\frac{2 \pi\left|x_{i}-x_{j}\right|}{P}\right)
$$

The choice of kernel
$k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)=\left[1+\frac{\sqrt{3}\left|x_{i}-x_{j}\right|}{\ell}\right] \exp \left(-\frac{\left|x_{i}-x_{j}\right|}{\ell}\right) \cos \left(\frac{2 \pi\left|x_{i}-x_{j}\right|}{P}\right)$

The choice of kernel

The choice of kernel

Does this matter?

After.

After.

How to use Gaussian Processes?

The mathematical model

$$
\begin{aligned}
\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\sigma}, \boldsymbol{\theta}, \boldsymbol{\alpha})= & -\frac{1}{2}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right]^{\mathrm{T}} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})^{-1}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right] \\
& -\frac{1}{2} \log \operatorname{det} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

where

$$
\left[K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})\right]_{i j}=\sigma_{i}{ }^{2} \delta_{i j}+\underbrace{k_{\boldsymbol{\alpha}}\left(x_{i}, x_{j}\right)}_{\begin{array}{c}
\text { kernel function } \\
\text { (where the magic happens) }
\end{array}}
$$

A simple \& efficient Python implementation

```
import numpy as np
from scipy.linalg import cho_factor, cho_solve
def kernel(x1, x2):
    # ...
def gp_lnlike(x, y, yerr):
    C = kernel(x[:, None], x[None, :])
    C[np.diag_indicies_from(C)] += yerr ** 2
    factor, flag = cho_factor(C)
    logdet = 2*np.sum(np.log(np.diag(factor)))
    return -0.5 * (np.dot(y, cho_solve((factor, flag), y))
    + logdet + len(x)*np.log(2*np.pi))
```


Using George

```
import george
import numpy as np
# kernel = george.kernels...
def george_lnlike(x, y, yerr):
    gp = george.GP(kernel)
    gp.compute(x, yerr)
    return gp.lnlikelihood(y)
```

What's the catch?

What's the catch?

My Problem
 Big Data

(by some definition)

Note: I hate myself for this slide too...

Computational complexity.

$$
\begin{aligned}
\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\sigma}, \boldsymbol{\theta}, \boldsymbol{\alpha})= & -\frac{1}{2}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right]^{\mathrm{T}} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})^{-1}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right] \\
& -\frac{1}{2} \log \operatorname{det} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

compute factorization // evaluate log-det // apply inverse
naïvely: $\mathcal{O}\left(N^{3}\right)$

Using George

```
import george
import numpy as np
# kernel = george.kernels...
def george_lnlike(x, y, yerr):
    gp = george.GP(kernel)
    gp.compute(x, yerr)
    return gp.lnlikelihood(y)
```


github.com/dfm/george

github.com/dfm/george

How can we scale?

$$
\begin{aligned}
\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\sigma}, \boldsymbol{\theta}, \boldsymbol{\alpha})= & -\frac{1}{2}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right]^{\mathrm{T}} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})^{-1}\left[\boldsymbol{y}-\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x})\right] \\
& -\frac{1}{2} \log \operatorname{det} K_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{\sigma})-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

Aren't kernel matrices Hierarchical Off-Diagonal Low-Rank?

- not me

Ambikasaran, DFM, et al. (arXiv:1403.6015)

Ambikasaran, DFM, et al. (arXiv:1403.6015)
github.com/sivaramambikasaran/HODLR

2. dfm@moka | tmux ne...:header (tmux)

```
164 \
```

```
164 \
```



```
temp.block(nRank[0], 0, nRank[1] , n)\ =\ Vinverse[0]*matrix.block(start, 0 , chil
```

temp.block(nRank[0], 0, nRank[1] , n)\ =\ Vinverse[0]*matrix.block(start, 0 , chil
165
165
166 \ \ \ //\ Computes tempSolve\ =\ Kinverse\temp-
166 \ \ \ //\ Computes tempSolve\ =\ Kinverse\temp-
167 ?
167 ?
168 \ \ \ MatrixXd tempSolve\ => Kinverse.solve(temp);` 168 \ \ \ MatrixXd tempSolve\ => Kinverse.solve(temp);`
169 ᄀ
169 ᄀ
170 () //| Computes matrix\ = matrix-Uinverse*tempSolve` 170 () //| Computes matrix\ = matrix-Uinverse*tempSolve`
171 ᄀ
171 ᄀ
172 \ | matrix.block(start, 0, child[0]->nSize, n)\ \ | matrix.block(start, 0, child
172 \ | matrix.block(start, 0, child[0]->nSize, n)\ \ | matrix.block(start, 0, child
173 \ \ matrix.block(start + child[0]->nSize, 0, child[1]->nSize, n)\ => matrix.block(sta
173 \ \ matrix.block(start + child[0]->nSize, 0, child[1]->nSize, n)\ => matrix.block(sta
174 \ }-
174 \ }-
175 };` 175 };`
176 ᄀ
176 ᄀ
1 7 7 ~ / * ! `1 7 7 ~ / * !`
1 7 8 Computes the determinant of the matrix.7
1 7 8 Computes the determinant of the matrix.7
1 7 9 ~ * / \urcorner ~
1 7 9 ~ * / \urcorner ~
180 void compute_Determinant() {` 180 void compute_Determinant() {`
181 if (Kinverse.rows()>0) { // Check needed when the matrix is predomin
181 if (Kinverse.rows()>0) { // Check needed when the matrix is predomin
1 8 2 ~ M a t r i x X d ~ L U ~ = ~ K i n v e r s e . m a t r i x L U () ; `1 8 2 ~ M a t r i x X d ~ L U ~ = ~ K i n v e r s e . m a t r i x L U () ;`
183 determinant = log(fabs(LU(0,0)));7
183 determinant = log(fabs(LU(0,0)));7
1 8 4 ~ f o r ~ (i n t ~ k = 1 ; ~ k < K i n v e r s e . r o w s () ; ~ + + k) ~ \{ ~ \ , ~
1 8 4 ~ f o r ~ (i n t ~ k = 1 ; ~ k < K i n v e r s e . r o w s () ; ~ + + k) ~ \{ ~ \ , ~
185
185
186 }-
186 }-
187 - /
187 - /
188 //
188 //
1 8 9 ~ \} `1 8 9 ~ \}`
190 };` 190 };`
HODLR_Node.hpp [cpp]
HODLR_Node.hpp [cpp]

The HODLR solver from George

```
import george
import numpy as np
# kernel = george.kernels...
def george_lnlike(x, y, yerr):
    gp = george.GP(kernel)
    gp.compute(x, yerr)
    return gp.lnlikelihood(y)
```


The HODLR solver from George

```
import george
import numpy as np
# kernel = george.kernels...
def george_lnlike(x, y, yerr):
    gp = george.GP(kernel, solver=george.HODLRSolver)
    gp.compute(x, yerr)
    return gp.lnlikelihood(y)
```


github.com/dfm/george

github.com/dfm/george

Does this work?

Yes.

K2 Campaign 1 exoplanet discoveries

21,703 stars
 80 days of data 36 planet candidates 18 confirmed planets

Published:
Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715)
Montet, Morton, Foreman-Mackey, et al. (arXiv:1503.07866)
Schölkopf, Hogg, Wang, Foreman-Mackey, et al. (arXiv:1505.03036)

Probabilistic modeling-combining physical and data-driven models-enables the discovery of new planets using open data and open source software

gaussianprocess.org/gpml
github.com/dfm/george
dfm.io/george

extra

