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I do data science…

(don't we all?)
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ex·o·plan·et 
ˈeksōˌplanət/ 

noun.  a planet that orbits a star 
outside the solar system.

Credit Google 



How do we find & study exoplanets?
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the transit method
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that's not what most stars look like!
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everything is against us!



Fig. 3.— Calculation of the transit probability. Left.—Transits are visible by observers within the penumbra of the planet, a cone with
opening angleΘ with sinΘ = (R⋆+Rp)/r, where r is the instantaneous star-planet distance. Right.—Close-up showing the penumbra
(thick lines) as well as the antumbra (thin lines) within which the transits are full, as opposed to grazing.

are tangent at four contact times tI–tIV, illustrated in Fig-
ure 2. (In a grazing eclipse, second and third contact do
not occur.) The total duration is Ttot = tIV − tI, the
full duration is Tfull = tIII − tII, the ingress duration is
τing = tII − tI, and the egress duration is τegr = tIV − tIII.
Given a set of orbital parameters, the various eclipse du-

rations can be calculated by setting equation (5) equal to
R⋆ ± Rp to find the true anomaly at the times of contact,
and then integrating equation (44) of the chapter by Murray
and Correia, e.g.,

tIII − tII =
P

2π
√
1− e2

∫ fIII

fII

[

r(f)

a

]2

df. (13)

For a circular orbit, some useful results are

Ttot ≡ tIV − tI =
P

π
sin−1

[

R⋆

a

√

(1 + k)2 − b2

sin i

]

, (14)

Tfull ≡ tIII − tII =
P

π
sin−1

[

R⋆

a

√

(1 − k)2 − b2

sin i

]

.

(15)
For eccentric orbits, good approximations are obtained by
multiplying equations (14-15) by

Ẋ(fc) [e = 0]

Ẋ(fc)
=

√
1− e2

1± e sinω
, (16)

a dimensionless factor to account for the altered speed of
the planet at conjunction. Here, “+” refers to transits and
“−” to occultations. One must also compute b using the
eccentricity-dependent equations (7-8).
For an eccentric orbit, τing and τegr are generally unequal

because the projected speed of the planet varies between

ingress and egress. In practice the difference is slight; to
leading order in R⋆/a and e,

τe − τi
τe + τi

∼ e cosω

(

R⋆

a

)3
(

1− b2
)3/2

, (17)

which is <10−2 e for a close-in planet with R⋆/a = 0.2,
and even smaller for more distant planets. For this reason
we will use a single symbol τ to represent either the ingress
or egress duration. Another important timescale is T ≡
Ttot − τ , the interval between the halfway points of ingress
and egress (sometimes referred to as contact times 1.5 and
3.5).
In the limits e → 0, Rp ≪ R⋆ ≪ a, and b ≪ 1 − k

(which excludes near-grazing events), the results are greatly
simplified:

T ≈ T0

√

1− b2, τ ≈
Tok√
1− b2

, (18)

where T0 is the characteristic time scale

T0 ≡
R⋆P

πa
≈ 13 hr

(

P

1 yr

)1/3 ( ρ⋆
ρ⊙

)−1/3

. (19)

For eccentric orbits, the additional factor given by equa-
tion (16) should be applied. Note that in deriving equa-
tion (19), we used Kepler’s third law and the approximation
Mp ≪ M⋆ to rewrite the expression in terms of the stel-
lar mean density ρ⋆. This is a hint that eclipse observations
give a direct measure of ρ⋆, a point that is made more ex-
plicit in Section 3.1.

2.4 Loss of light during eclipses

The combined flux F (t) of a planet and star is plotted
in Figure 1. During a transit, the flux drops because the

4

Credit Winn (2010) 
arXiv:1001.2010 



need to look at the right place
at the right time

and measure 
extremely precise 

photometry



Credit NASA 

Kepler



Credit NASA 



Credit Carter Roberts 



Credit NASA



Kepler-32



Kepler-32



Kepler-32



Kepler-32



�1.0 �0.5 0.0 0.5 1.0
time since transit [days]

�100

�50

0

re
la

ti
ve

br
ig

ht
ne

ss
[p

pm
]



Credit Fabrycky et al. (2012)

12 Fabrycky et al.

Figure 16. Kepler-31 phase curves, in the style of figure 3. For
the small inner candidate KOI-952.05, the phase is with respect to
a linear ephemeris, the data in that panel are binned together in
phase. The vertical scale of that panel is 20% of the other panels.

KIC 9347893, 9.4 arcsec to the west. Moreover, the cen-
troid information has all transits coincident within 1σ
of the target. The transits cannot be hosted by a back-
ground star further than Rc = (0.3, 0.5, 0.8) arcsec in
the case of Kepler-31b, Kepler-31c, KOI-935.03 respec-
tively. For KOI-935.04, the transits are too shallow for a
constraining centroid analysis.
Again pursuing probability calculations as above, the

chance of a star unassociated with the target being the
actual host is only ∼ 3 × 10−4. The probability of a
physical companion hosting the planets is ∼ 0.04.

3.2.4. Kepler-32

A J-band image from UKIRT shows the nearest star to
be KID 9787232, ∼ 6.6” to the west, resulting in rather
low contamination.
The centroids during transit for Kepler-32b and

Kepler-32c differ from those out-of-transit by only ∼ 2σ,
roughly consistent with measurement uncertainties. The
∼ 3σ radii of confusion Rc are 0.5” for Kepler-32b and
0.8” for Kepler-32c. For KOI-952.03, .04, and .05, the
transits are too shallow for a constraining centroid anal-
ysis.
The host star is an M-dwarf and therefore of special in-

terest. The Kepler Follow-up Program has obtained two
spectra of Kepler-32: one spectrum from McDonald Ob-
servatory and one from Keck Observatory. Both spectra
are weak due to the faintness of the star (Kp=15.8). The
cross correlation function between the observed spectra
and available models is maximized for temperatures of
∼ 3900 K and ∼ 3600 K, respectively. However, the
atmospheric parameters are not well determined, as the
star is cooler than the library of atmosphere models avail-
able. Both spectra are consistent with the KIC clas-
sification as a cool dwarf (Teff = 3911, log g = 4.64,
[M/H]=0.172). We conservatively adopt these values of
Teff and log g with uncertainties of 200K and 0.3 dex and
a [M/H] of 0± 0.4 based on the KIC (Brown et al. 2011).
By comparing to the Yonsei-Yale isochrones, we derive
values for the stellar mass (0.58 ± 0.05M⊙) and radius
(0.53± 0.04R⊙) that are slightly larger than those from
the KIC. We estimate a luminosity of 0.06 ± 0.02 L⊙

and an age of ≤ 9Gyr.
Muirhead et al. (2011) have also obtained high-

resolution IR spectrum of Kepler-32=KOI-952, finding
a stellar Teff = 3726+73

−67, [Fe/H]= 0.04+0.08
−0.10. Interpret-

ing their data via Padova models (Girardi et al. 2002),
they inferred a considerably less massive and smaller star.
We encourage further detailed analyses of the host star
properties, as these have considerable uncertainties that
directly affect the sizes and masses for the planets.
The probability of a star unassociated with the target

being the actual host is only ∼ 3 × 10−3. The probabil-
ity of a physical companion hosting the planets is ∼ 0.34.
This latter number is relatively large in this case because
all the transit depths are small, so they could in principle
be much larger planets hosted by a star which is dramat-
ically diluted. This opens up the possibilities for a very
large range of companions (down to masses as low as
∼ 0.1M⊙) that could host one or more of these objects,
as long as transits near apocenter are invoked to match
the durations (fig. 1).

4. PLANETARY MASS LIMITS

4.1. Dynamical Stability Analysis

Many of the systems in this paper and its compan-
ions (Papers II and III) are not completely solvable
with present data; e.g., the gravitational interactions
of the component planets do not yield unique solutions
for their masses. Rather, there exists degeneracy be-
tween the masses and eccentricities, as was the case for
Kepler-9 before radial velocity constraints were applied
(Holman et al. 2010). However, we constrain them to
be in the planetary regime because the pairs of plan-
ets all have small period ratios. In two-planet systems,
a sharp boundary exists between provably stable orbits
(Marchal & Bozis 1982) and orbits that are allowed to
cross, according to energy and angular momentum con-
servation. This boundary is when the separation of the
planetary semi-major axes, aout − ain, exceeds a certain
number (2

√
3 ≈ 3.46, for coplanar, circular orbits) of

mutual Hill spheres,

rH =
ain + aout

2

(Min +Mout

3M⋆

)1/3
. (5)

When the separation is only slightly closer than this,
numerical integrations generally show the planets chaoti-
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that looks pretty good…
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how do we clean up this mess?



Standard practice: Filtering
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Exoplanets are hard to find



Vetting of our TCEs produced a list of 836 eKOIs, which are
analogous to KOIs produced by the Kepler Project. Each light
curve is consistent with an astrophysical transit but could be due
to an eclipsing binary (EB), either in the background or gravi-
tationally bound, instead of a transiting planet. If an EB resides
within the software aperture of a Kepler target star (within ∼10
arcsec), the dimming of the EB can masquerade as a planet
transit when diluted by the bright target star. We rejected as
likely EBs any eKOIs with these characteristics: radii larger than
20 R⊕, observed secondary eclipse, or astrometric motion of the
target star in and out of transit (SI Appendix). This rejection of
EBs left 603 eKOIs in our catalog.
Kepler photometry can be used to measure RP=Rp with high pre-

cision, but the extraction of planet radii is compromised by poorly
known radii of the host stars (11). To determine Rp and Teff, we
acquired high-resolution spectra of 274 eKOIs using the HIRES
spectrometer on the 10-m Keck I telescope. Notably, we obtained
spectra of all 62 eKOIs that haveP> 100 d. For these stars, the∼35%
errors inRp were reduced to∼10%bymatching spectra to standards.
To measure planet occurrence, one must not only detect

planets but also assess what fraction of planets were missed.
Missed planets are of two types: those whose orbital planes are
so tilted as to avoid dimming the star and those whose transits
were not detected in the photometry by TERRA. Both effects
can be quantified to establish a statistical correction factor. The
first correction can be computed as the geometrical probability
that an orbital plane is viewed edge-on enough (from Earth) that
the planet transits the star. This probability is PT =Rp=a, where
a is the semimajor axis of the orbit.
The second correction is computed by the injection and recovery

of synthetic (mock) planet-caused dimmings into real Kepler pho-
tometry. We injected 40,000 transit-like synthetic dimmings having
randomly selected planetary and orbital properties into the actual
photometry of our Best42k star sample, with stars selected at
random. We measured survey completeness, CðP;RPÞ, in small
bins of (P, RP), determining the fraction of injected synthetic
planets that were discovered by TERRA (SI Appendix). Fig. 1
shows the 603 detected planets and the survey completeness, C,
color-coded as a function of P and RP.
The survey completeness for small planets is a complicated

function of P and RP. It decreases with increasing P and decreasing

RP as expected due to fewer transits and less dimming, respec-
tively. It is dangerous to replace this injection and recovery as-
sessment with noise models to determine C. Such models are not
sensitive to the absolute normalization of C and only provide
relative completeness. Models also may not capture the com-
plexities of a multistage transit-finding pipeline that is challenged
by correlated, nonstationary, and non-Gaussian noise. Measuring
the occurrence of small planets with long periods requires injec-
tion and recovery of synthetic transits to determine the absolute
detectability of the small signals buried in noise.

Planet Occurrence
We define planet occurrence, f, to be the fraction of stars having
a planet within a specified range of orbital period, size, and per-
haps other criteria. We report planet occurrence as a function of
planet size and orbital period, f ðP;RPÞ and as a function of planet
size and the stellar light intensity (flux) incident on the planet,
f ðFP;RPÞ.

Planet Occurrence and Orbital Period. We computed f ðP;RPÞ in a
6 × 4 grid of P and RP shown in Fig. 2. We start by first counting
the number of detected planets, ncell, in each P-RP cell. Then we
computed f ðP;RPÞ by making statistical corrections for planets
missed because of nontransiting orbital inclinations and because
of the completeness factor, C. The first correction augments each
detected transiting planet by 1=PT = a=Rp, where PT is the geo-
metric transit probability, to account for planets missed in inclined
orbits. Accounting for the completeness, C, the occurrence in a
cell is f ðP;RPÞ= 1=np

P
iai=ðRp;iCiÞ, where np = 42;557 stars, and

the sum is over all detected planets within that cell. Uncertainties
in the statistical corrections for a=Rp and for completeness may
cause errors in the final occurrence rates of ∼10%. Such errors
will be smaller than the Poisson uncertainties in the occurrence
of Earth-size planets in long period orbits.
Fig. 2 shows the occurrence of planets, f ðP;RPÞ, within the

P-RP plane. Each cell is color-coded to indicate the final planet
occurrence: the fraction of stars having a planet with radius and
orbital period corresponding to that cell (after correction for
both completeness factors). For example, 7.7 ± 1.3% of Sun-like
stars have a planet with periods between 25 and 50 d and sizes
between 1 and 2 R⊕.
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Fig. 1. 2D domain of orbital period and planet size,
on a logarithmic scale. Red circles show the 603
detected planets in our survey of 42,557 bright Sun-
like stars (Kp = 10–15 mag, GK spectral type). The
color scale shows survey completeness measured by
injection and recovery of synthetic planets into real
photometry. Dark regions represent (P, RP) with low
completeness, C, where significant corrections for
missed planets must be made to compute occur-
rence. The most common planets detected have
orbital P < 20 d and RP ≈ 1− 3 R⊕ (at middle left of
graph). However, their detectability is favored by
orbital tilt and detection completeness, C, that
favors detection of such close-in, large planets.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1319909110 Petigura et al.

Figure credit: Petigura, Howard & Marcy (2013) 



What about Gaussian Processes?



gaussianprocess.org/gpml

Rasmussen & Williams
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What is a Gaussian Process?
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HUGE
the data are drawn from one

Gaussian
* the dimension is the number of data points.

*



where

[K↵(x, �)]ij = �i
2
�ij + k↵(xi, xj)

y ⇠ N (f✓(x), K↵(x, �))

The mathematical model
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kernel function 
(where the magic happens)
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The choice of kernel
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The choice of kernel
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Does this matter?
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How to use Gaussian Processes?



kernel function 
(where the magic happens)
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The mathematical model

[K↵(x, �)]ij = �i
2
�ij + k↵(xi, xj)



import numpy as np 
from scipy.linalg import cho_factor, cho_solve 

def kernel(x1, x2): 
    # ... 

def gp_lnlike(x, y, yerr): 
    C = kernel(x[:, None], x[None, :]) 
   C[np.diag_indicies_from(C)] += yerr ** 2 

    factor, flag = cho_factor(C) 
    logdet = 2*np.sum(np.log(np.diag(factor))) 
    return -0.5 * (np.dot(y, cho_solve((factor, flag), y)) 
                   + logdet + len(x)*np.log(2*np.pi))

A simple & efficient Python implementation



import george 
import numpy as np 

# kernel = george.kernels... 

def george_lnlike(x, y, yerr): 
    gp = george.GP(kernel) 
    gp.compute(x, yerr) 
    return gp.lnlikelihood(y)

Using George

github.com/dfm/george



What's the catch?



What’s the catch?

My Problem 
= 

Big Data

Note: I hate myself for this slide too…

(by some definition)



Computational complexity.

O(N3)naïvely:

compute factorization  //  evaluate log-det  //  apply inverse

log p(y |x, �, ✓, ↵) =� 1

2

[y � f✓(x)]
T K↵(x, �)

�1
[y � f✓(x)]

� 1

2

log detK↵(x, �)�
N

2

log 2⇡



import george 
import numpy as np 

# kernel = george.kernels... 

def george_lnlike(x, y, yerr): 
    gp = george.GP(kernel) 
    gp.compute(x, yerr) 
    return gp.lnlikelihood(y)

Using George

github.com/dfm/george
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How can we scale?



log p(y |x, �, ✓, ↵) =� 1

2

[y � f✓(x)]
T K↵(x, �)

�1
[y � f✓(x)]
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log detK↵(x, �)�
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log 2⇡



“Aren’t kernel matrices Hierarchical Off-Diagonal Low-Rank?

— not me



exponential squared



K(3)

=

K3

⇥

K2

⇥

K1

⇥

K0

Full rank; Low-rank; Identity matrix;

Zero matrix;

Ambikasaran, DFM, et al. (arXiv:1403.6015)



K(3)

=

K3

⇥

K2

⇥

K1

⇥

K0

Full rank; Low-rank; Identity matrix;

Zero matrix;

Ambikasaran, DFM, et al. (arXiv:1403.6015)

O(N log

2 N)



github.com/sivaramambikasaran/HODLR



github.com/sivaramambikasaran/HODLR



import george 
import numpy as np 

# kernel = george.kernels... 

def george_lnlike(x, y, yerr): 
    gp = george.GP(kernel) 
    gp.compute(x, yerr) 
    return gp.lnlikelihood(y)

The HODLR solver from George

github.com/dfm/george



import george 
import numpy as np 

# kernel = george.kernels... 

def george_lnlike(x, y, yerr): 
    gp = george.GP(kernel, solver=george.HODLRSolver) 
    gp.compute(x, yerr) 
    return gp.lnlikelihood(y)

The HODLR solver from George

github.com/dfm/george
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Does this work?



Yes.



stars 
days of data 
planet candidates 
confirmed planets

21,703 
80 
36 
18

K2 Campaign 1 exoplanet discoveries

Published: 
Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715) 

Montet, Morton, Foreman-Mackey, et al. (arXiv:1503.07866) 
Schölkopf, Hogg, Wang, Foreman-Mackey, et al. (arXiv:1505.03036)



XKCD/1555



XKCD/1555





Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715) 
Montet, Morton, Foreman-Mackey, et al. (arXiv:1503.07866) 

Schölkopf, Hogg, Wang, Foreman-Mackey, et al. (arXiv:1505.03036)

Probabilistic modeling—combining 
physical and data-driven models—enables 
the discovery of new planets using open 

data and open source software

gaussianprocess.org/gpml

github.com/dfm/george 

dfm.io/george
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