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ML@ ATLAS & CMS:  
               setting the stage

meeting name dateMauro Donegà: Data Science @ LHC 2015
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Outline
Give an idea of how we use and tweak ML algorithms in HEP 
through examples 

Typical use is a mixture of ML technology and physics insight 

- The role of Monte Carlo (MC) simulations 
- Data / MC disagreements and systematic uncertainties 
- Detailed examples: 

Energy regression 
Event classification 

- Flash examples: 
Pixel clustering 
Track quality classification 
Data placement 

- Final remarks
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Some ATLS/CMS ML applications

A non-exhaustive list of machine learning applications in ATLAS/CMS: 

Pattern recognition: clustering hits 
Tracks classification: duplicate removal, quality selection,… 

 Energy / momentum regressions: photons, electrons, (b-)jets,… 
 Objects identification: select electron, b/c-jet,… form (typically jets) background 
 Entire event classification: separate signal from background(s) events 
  Fisher discriminant, Likelihoods, Neural Networks, BDT, 1D/2D fit MVA outputs 

Mixed use: look at the classifier output to design simpler selections  
Data quality monitoring - outliers rejection 

   Data placement: predict which samples will become hot 

The vast majority of these application moved from “cut-based” solutions to   
supervised learning techniques (unsupervised learning at present not used)
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Monte Carlo & Systematics uncertainties
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Monte Carlo Simulations
Labeled samples are usually (~always) obtained from Monte Carlo Simulations: 

- sometimes background candidates are taken from data in signal-free control regions 

Monte Carlo datasets are CPU-expensive which means we typically have limited statistics: 
- signals           O(105 - 106) events 
- backgrounds O(106 - 107) events 

Full / Fast simulations = higher / lower description accuracy  = More/Less CPU Expensive 
Fast simulations are obtained using simplified descriptions of the detectors 

The vast majority of our datasets are in Full Simulation. 

Fast simulations mostly used for “parameter scans”: 
A theory/model predicts the existence of a signal and is governed by a few parameters. 
Scan the parameters space and for each point produce a signal sample 

Cannot use fast simulations for large samples in one point:  
hit the limits of the simplified description

Ref. http://arxiv.org/abs/1005.4568

http://arxiv.org/abs/1005.4568
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At each step in the MC chain (see V. Innocente) you can have mis-modelings leading to 
systematic deviations/uncertainties between simulations and data. 

Data/MC disagreement: 
- generators:  physics process (see T. Golling) 
- simulations: detector response 

Simulations are compared to data using control regions or “standard candle” signals: 
data/ MC disagreements are propagated to the final measurement’s systematic uncertainty 

Data/MC as Systematic uncertainties
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The Z-boson has been studies with high precision in previous experiments (LEP). 
Now Z-boson is used as standard candles to calibrate the detector.

HEP physicist’s best friend

Z→e+e- event display

electron

tracks

electron

energy in 
calorimeter

Set the energy scale of the detector: scale the energy/momentum of the electrons to match 
the Z mass position in data to the one in MC. Smear the MC to match the Data resolution.

systematic  
uncertainty 

band

Ref. http://arxiv.org/abs/1502.02702

(Same idea applies to Z→μμ, Z→bb, etc… to set μ, b-jets,etc… scale/resolution )
Residual differences are typically very small and are quoted as systematic uncertainties.

http://arxiv.org/abs/1502.02702
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Systematic uncertainties on inputs
Systematics uncertainties typically lead to non-optimal classification/regression. 
We know how to set a systematic on the input variables but don’t have a standard recipe  
to assign systematics to BDT outputs. 

Example: photon identification 
BDT classifier to separate photons from fake photons i.e. jets (π0→γγ) 
o(12) input variables, some of which are correlated, mostly describing the shape of  
the calorimeter cluster 

Photon 
compact

Fake photon 
spread out

Ref. https://twiki.cern.ch/twiki/bin/view/CMSPublic/EGMPhotonsSpring2013

Use physics driven features not full information

https://twiki.cern.ch/twiki/bin/view/CMSPublic/EGMPhotonsSpring2013
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Nature decided not to give us a standard candle for photons (there is no Z→γγ) 
Validation can be done on electrons reconstructed as photons using again the Z→e+e-  

electron = track + calorimeter cluster 
photon   = calorimeter cluster

Z→e+e- event display

electron

tracks

electron

energy in 
calorimeter

Diphoton event display

photon

energy in 
calorimeter

photon

PhotonsElectrons

Intermezzo: no photon source

The same inputs variables can be used for electrons and photons
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The systematic 
uncertainty on the Photon 
ID BDT is small and it is 
set as the envelop that 
covers the data/MC 
discrepancies:  

BDT output shift ±0.01

Systematic uncertainties on BDT

http://arxiv.org/abs/1502.02702
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Example: Photon Energy regression
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“photon shape” in the calorimeter coded  
in one variable ⇒ “shape” = σφ/ση 

The shape depends on the material the photon  
crosses ⇒ need η 
The higher the energy the narrower the photon 
⇒ need Erec

Erec/Etrue <1 
Energy loss

Illustration only
Erec/Etrue >1 
resolution

12

Photon Energy corrections
Initial strategy was to parametrise the correction 
based on 3 physics driven variables:

We measure Erec we want the particle true energy Etrue : Correction = Erec/Etrue

MC: single photon gun (uniform energy) [3-300] GeV 
uniformly in the detector volume (η,φ) 

Method: 
Bin the space {shape, η, Erec}  
For all bins fit the most probable value of Erec/Etrue  
Build a 3D lookup table that for each bin in  
{shape, η, Erec} returns as correction the fitted most 
probably probable value. 

We get one value per bin 

F1(σφ/ση,η)F2(E)

Ref. http://arxiv.org/abs/1502.02702

most probable

 Erec/Etrue

http://arxiv.org/abs/1502.02702
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Photon Energy regression
How to improve the corrections ? Add more variables in the description :  

- difficult to model correctly the correlations  
- curse of dimensionality  

Move to a multivariate approach: BDT (Gradient Boosting)

Use many more variables (first try O(80) then down to O(20) ) 
correct treatment of the correlations by the BDT.
Basically add whatever variable makes sense to describe 

the photon 
“photon shape” variables 
photon coordinates (eta, phi) 
median energy density ρ in the event 

Target Variable: Erec/Etrue  
10-30% improvement on resolution depending 
on the energies and region of the detector

Training sample: again single particle gun MC 
(uniform energy spectrum [3-300] GeV and 
uniform in the detector volume (η,φ)

H→γγ MC 
Illustration only

parametric

BDT

Still we get one value per bin of the input space 
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Photon Energy regression 
final implementation

The likelihood for the training is :

This way we can obtain the parameters of the  
crystal ball as regression outputs: 
e.g. we get the E-correction (μ) and the resolution (σ)

otherwise

L = �
X

MC photons

ln p(y|x)

p(y|x) = f(y|µ(x),�(x),↵l(x), nl(x),↵r(x), nr(x))

BDT (Gradient Boosting)

Gaussian core 
with left/right  
exponential tails

Intuition: for each of the leaves of the trees you get a constant number 
              (i.e. f(x) is a piece-wise constant function over the input-variables space) 
But from physics we know what is the shape of the Etrue/Ereco in each leaf: 
               Erec/Etrue can be modelled with a double Crystal Ball function.

Ref. http://arxiv.org/abs/1502.02702

http://arxiv.org/abs/1502.02702
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Example: Higgs→γγ classifier
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Signal and backgrounds
Higgs→γγ search 

Signal: pair of photons from Higgs→γγ 
Background: pair of photons or fake photons produced by other mechanisms

Fit a mass bump is the best way to 
convince anyone of the presence of 
a new particle

Ref. http://arxiv.org/abs/1407.0558

http://arxiv.org/abs/1407.0558
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Event classes
To increase the analysis sensitivity we don’t fit the total mγγ distribution, but we  
split the events into classes based on signal resolution and Signal/Background

High S/B Low S/B

Strategy:  1) train one BDT classifier to separate Higgs signal from background,  
                2) bin events in several classed based on the BDT output,  
                3) fit the invariant mass in each category

Why don’t you use the BDT until the end and extract the signal from the BDT distribution? 
…fit a mass bump is the best way to convince anyone of the presence of a new particle. 

It has a direct physics meaning
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Diphoton classifier

We don’t want to discover a bump at the signal mass used for training ! 

Train a BDT on MC: 
- background: mix of all background mechanisms 
- signal: before discovery we didn’t know the mass of the Higgs boson !  

           but for each mass we could build a very precise model:  
           train at one given mass (e.g. 123 GeV) and make the BDT blind to the mass

Signal like candidates in general have: 
- higher photon energy 

- more centrally produced 

- better identified photons 

- better mass resolution

Energy γ1  / mγγ 
Energy γ2  / mγγ 
η (γ1) 
η (γ2) 
cos (Δφγγ) 
Photon ID (γ1) 
Photon ID (γ2) 
σm / mγγ 

…

Dividing all variables with dimensions by the invariant mass of the candidate (mγγ ) 
we hide the mass to the BDT (and it cannot learn it indirectly because of the incomplete 
information on the kinematics of the event)

Use BDTs in cascade: exe input energy regression, photon classifier, etc…
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Diphoton classifier
Making the BDT mass blind…

…also means losing the important handle on the resolution information. 
To bring the resolution back we apply a signal weight:

Weight = 1 /  ( σm / mγγ ) the better the resolution the larger the weight

In reality we don’t know precisely the vertex (we get it from another BDT)  
and so we build a more complex weight that takes this into account: 

Weight = pvtx /  ( σright vertexm / mγγ ) + (1 - pvtx ) /  ( σwrong vertexm / mγγ )  

signal

background

mγγ
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BDT output

Transformed such that the sum of the signal components is flat

Number of classes (5) and boundaries chosen to optimize the S/B.  
(discard events in the lowest score bin)

Discarded events
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Validation
Validation on standard candle Z→ee events reconstructed as photons: 
check that input variables and their correlations in the MC is sufficiently accurate 

Systematic uncertainty band obtained propagating the photon identification 
uncertainty and the energy resolution uncertainty

Discarded events
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Mass fit
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Higgs discovery
All previous classes (together with tagged events and 7 TeV classes)  
combined in the final result

Ref. http://arxiv.org/abs/1407.0558

http://arxiv.org/abs/1407.0558
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Flash examples
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Pixel clustering 

Ref. http://arxiv.org/abs/1406.7690

Charged particles passing through a pixel unit creates an electronic signal. 

Sensor

bump bond

electronic 
signal

charged 
particle

Pixels units are arranged in a 2D matrix in a module  
(here is a cross section).

How to assign / split clusters to different tracks ? 
Already identifying merged clusters improves track quality through ambuigity-resolving

⎫
 
⎬

 
⎭

2 pixel  
cluster

⎫
 
｜

 
⎬

 
｜

 
⎭

3 pixel  
cluster

⎫
 
｜

 
⎬

 
｜

 
⎭

3 pixel  
cluster

1 particle 2 particles 1 particle

Pixels are merged into clusters using a CCA (8 cell connected  
component analysis). Barycentre is used to improve resolution

The innermost layer of the pixel detector is the one that suffer the most by merged hits 
(higher particle density per cm2 )

http://arxiv.org/abs/1406.7690
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Neural Network for cluster splitting

To split pixel clusters we use 10 Neural networks: 
- 1 NN to estimate the probability that a cluster was created by (1, 2, 3) tracks 
- 3 NNs (x,y)x(1,2,3) outputs used to estimate the impact point of the particle (regression) 
- NNx x(1,2,3) + NNy x(1,2,3) used to estimate the uncertainty on the impact point of the 

particle in the transverse / longitudinal directions 

No feature extraction the full information is provided to the NN: 60 input nodes 
7x7 matrix of the charged collected in the cluster, size of the pixels in the cluster 
layer number  and if barrel/endcap, angles of incidence of the charged particle 

All networks include two hidden layers 

Training samples are chosen to represent busy particle environments (jets core) and the 
training is performed with JetNet 

NN cluster splitting runs 6 times slower than CCA still fast enough: 
                                                                      only 5% of the total event reconstruction time
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Cluster splitting performance

Example of cluster split

The NNs can mistakenly split a cluster and increase the risk of fake/duplicate tracks. 
Working point tuned on simulations: 71% efficiency in splitting 2 particles with  
                                                          7.5% single particle clusters wrongly split in two

Average number of shared measurements 
in the innermost pixel layer, before (CCA) 
and after splitting (NN)

first NN output
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Track selection

In MC, we observed that a number of  
true tracks are associated to 2 or more 
reconstructed tracks.  

We sought to identify pairs of tracks that 
are duplicates and to merge them into a 
single track. 

Train a BDT using as input variables e.g.: 
- nMissingOuterHits from inner track  
- nMissingInnerHits from outer track  
- Average Hit R  
- Average Hit Z  

Reduced on average the number of 
duplicate tracks by a factor of ~2

illustration only
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Data popularity
CMS has a Dynamic Data Placement group which uses historical information to place popular dataset to 
sites: optimize resources usage. 

Predict which datasets will become popular once they appear and also predict decline in popularity of 
certain datasets, reduce redundant activity, improve resource allocation, etc.  

Main steps: 
- Dataframe generator toolkit: collect/transform data from CMS data-services (DBS/PhEDEx/SiteDB /

PopularityDB/Dashboard)  
- Select input variables (nfiles, size, nsites, nreleases, creator, naccess, nuser, totcpu,… 
- Feed Machine Learning (ML) algorithms (python/R code) for data analysis  

Achieved the first proof of concept

Ref. https://indico.cern.ch/event/365073/contribution/0/attachments/726102/996447/DCAF4CERN_IT_Analytics.pdf 

- V. Kuznetsov, T. Wildish, L. Giommi, D. Bonacorsi, "Exploring Patterns and Correlations in CMS Computing Operations Data with Big 
Data Analytics Techniques”, presented by D. Bonacorsi at ISGC’15 (March 15-20 2015), accepted for publication in PoS 
SISSA, http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf 

- V. Kuznetsov, T. Wildish, D. Giordano, N. Magini, T. Boccali, M. Neri, M. Girone, D.Bonacorsi, "Exploiting CMS data popularity to 
model the evolution of data management for Run-2 and beyond”, presented by D. Bonacorsi at CHEP’15 (April 13-17, 2015), to be 
published in IOP-CS, https://indico.cern.ch/event/304944/session/5/contribution/335 

- “Studi di data popularity nell’analisi distribuita su Grid dell’esperimento CMS a LHC”, B.Sc. thesis of Matteo Neri (can be provided 
upon request - available only in Italian though) 
- “Predicting CMS datasets popularity with Machine Learning”, B.Sc. thesis of Luca Giommi (can be provided upon request) 
- "Evaluation of Apache Spark as framework for CERN's Big Data Analytics”, CERN openlab 2015 report of Siddha Ganju (can be 
provided upon request)

https://indico.cern.ch/event/365073/contribution/0/attachments/726102/996447/DCAF4CERN_IT_Analytics.pdf
http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf
https://indico.cern.ch/event/304944/session/5/contribution/335
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Final remarks
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All our analyses are developed within the ROOT framework.  
The ML package most widely used is ROOT/TMVA 

Because TMVA is ROOT one can move from a cut based analysis to a ML algorithm in no time 
Many algorithms are supported: 
             • Rectangular cut optimisation 

        • Multi-dimensional likelihood estimation 
• Linear and nonlinear discriminant analysis 
• Artificial neural networks  

TMVA opened the door of ML to the HEP community ! 

Some considerations: 
- most TMVA users use ML algorithms as black boxes: it works why should I care ? 
- little/ no attempt at optimising the default settings: it works why should I care ? 

   - on the other hand… it works why should I care ? 

With a zero-cost and performing tool, it is difficult to move forward to explore something new. 
Adding to inertia: ROOT / ML tools use different interfaces (HEP works with ROOT-NT)

• Support vector machine 
• Boosted/bagged decision trees 
• etc… 

The role of ROOT / TMVA

This workshop is a golden occasion to answer the important questions: 
 How optimal is our use of ML algorithm ? How much can we gain ? 
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Summary

Thanks for the fruitful discussions to :  
J, Bendavid, T. Golling, V. Innocente, V. Kuznetsov, P. Musella,  
G. Petrucciani, M. Pierini, J.R. Vlimant, M. Walker

Machine Learning algorithms in ATLAS/CMS are ubiquitous 

Analysis design and design of Machine Learning models/tools 
are deeply connected. We see through our detectors and tools 

Begin the discussion with people from different backgrounds to 
create new ideas to answer fundamental physics questions


