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TLAS & CMS = Big Data

Thousands of particles Millions of readout-channels
(correlated but sparse)
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Hundreds of millions of proton-proton collisions
(events) per second



Disclaimer

Not meant to give a complete picture

Rather give a few representative examples and
identify a few key questions

Target Data Science audience — introduce
minimum of physics context needed

The idea is to leave ample time for discussion



What we care about

We are physicists, not data scientists
We want to focus on physics (mainly)

We want to make “optimal” use of our data — given some boundary
conditions

Performance: fully exploit information content in our data
Given CPU, memory, statistics (simulation) limitations

Minimize “re-inventing the wheel” i.e. make optimal use of person-
power, exploit synergies: applicability of one ML solution to another
related HEP problem (b-jets = boosted objects)

« \What tools/approach for what problem?

« Learn how to tune, validate and troubleshoot tool
Complexity, tunability, robustness
Gain understanding: are there features we haven'’t used yet
Use state-of-the-art tools: stay connected with ML community



Typical HEP problems

Particle finding, reconstruction, classification

— B-jetID (BDT, NN, ATL-PHYS-PUB-2015-022), tau ID (BDT,
arxiv:1412.7086), electron ID (LH, ATLAS-CONF-2014-032),

Event classification (see Mauro’s talk)
Automatic fault detection

Regression problems (see Mauro’s talk)

— Electron and photon energy calibration using BDT
regression (arxiv:1407.5063)



Particle classification: b-jet identification
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Not just identification and classification,
also precise parameter determination
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Example: b-jet Identification

» Compression of information: hits — tracks — jet-based quantities, e.qg.:

— Displaced vertex

— b probability of jet as product of b track probabilities
* Inputs: we currently use jet-based quantities

*  Output: b-jet or not using NN & BDT: mainly TMVA, also test AGILEPack (C++ framework for
deep learning designed for HEP purposes by Luke de Oliveira:
https://github.com/lukedeo/AGILEPack )

b-jet non-b-jet

ATLAS-CONF-2011-102, ATL-PHYS-PUB-2015-022, ATLAS-CONF-2014-046



ATL-PHYS-PUB-2015-001

Example: charm-jet Identification

Based on the same main idea; “soft Jet
lepton” and “lifetime"

More difficult than b-jet identification
— charm-jets are “between” light
and b in many distributions

— Shorter decay lengths for charm-
jets

— Fewer tracks than b-jets, hard to

resolve displaced vertex @
JetFitterCharm (b-tagging retuned)
— Looser track selection

— New variables @
— Used in 2 analysis [arxiv:
e ®.

1501.01325, arxiv:1407.0608]



 Define 2 discriminants
based on 3 NN outputs:

Fraction of Jets

Example: charm-jet Id
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Interesting follow-up questions
(Example: b-jets and charm-jets)

Have we identified the best observables (minimally
correlated, provide best predictive power)

How to find / construct new observables (capture
full feature space)

Is it beneficial to go to lower-level input variables:
track-based (variable length)

How to go from a multi-class output (b, charm, light)
back to individually tuned 2-class outputs (1 signal
vs 2 backgrounds) given analysis needs

Just began to apply Deep Learning



Particle classification: boosted objects



Example: boosted objects
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ldentifying boosted objects
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|dentifying boosted objects
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... and there are many ways to interpret this picture

Mihailo Backovic (BOOST 2015)
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Subjets - recluster the event with a smaller cone and exploit
correlations between subjets.
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Clustermg history- exploit the differences in steps
| which led to the jet.
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Partons - Interpret the jet as a partonic structure with
Kinematic properties of some heavy boosted object.
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Energy distribution - the picture is essentially some distribution
f(n,¢) . Look at the moments of the distribution

\
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ldentifying boosted objects

Essentially image recognition problem

3D jet-image

Calorimeter cells ~ pixels in a camera (use all available
information for jet classification)

Use computer vision classification algorithms (facial
recognition)

One difference: we have a model for the image — no model to
recognize Brad Pitt’s face!

NN [arXiv:1501.05968]

Fisher discriminant with pre-processing [arxiv:1407.5675]
— Use subjets to align images: like eyes in a face

— Make use of symmetries: center, rotate, translate



Multi-class problem: various boosted objects

VS

22



Boosted objects: figure of merit
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Boosted objects: figure of merit vs pT
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Interesting follow-up questions
(Example: boosted objects)

* \WWhat are the upper bounds on discrimination
— For a detector with perfect resolution (informing
future detector designs)
* Are there higher-level features not yet

captured in our observables? [arxiv:1407.5673]
— Using huge amounts of statistics: finely binning in

all known features and see if there are further
features



HEP Machine Learning Challenges



Higgs ML Challenge

HigosIH the HiggsML challenge

May to September 2014

Vnen High Energy Physics meets Machine Learning
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info to participate and compete : hﬂps://www.koggle.(om/(/higgs-boson

Big success !

1785 teams (1942 people) have
participated

6517 people have downloaded
the data

Most popular challenge on the
Kaggle platform (until spring
2015)

35772 solutions uploaded
136 forum topics with 1100 posts

Similar challenge by LHCDb
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Interesting follow-up questions
(Example: Higgs ML challenge)

* Learned a lot on interaction with ML
community
— Problem not too easy / not too complicated
— Definition of figure of merit
— Long-term planning: follow-up after challenge

— Goal: just want a solution or reuse code

 K-fold cross validation to measure
performance independently of training



K-fold cross validation

1) Reserve a test sample from the data {2 — Q' C Q (if one wants to validate

generalisation beyond the k-fold cross validation step).
2) Randomly split the remaining data into k sub samples:

Q= Qi=1,2,...k

3) Cycle through training k times, each time leaving one sub-sample out.

e.g. 5-fold cross validation: train 5 times dropping out one sub-sample at a time:

Use average MVA parameter configuration obtained from the k-folds.
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Particle finding: tracking in Run 4
- case for another ML challenge




Tracking in Run 4

20x more tracks than now
In Run 2

x2-5 CPU shortage
(offline)

HEP pattern recognition
techniques are more than
25 years old »

Are there better tools out
there?
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Why is Parallel Tracking so hard?

Algorithms: iterative (propagation, fitting), irregular
(combinatorial searches with lots of branch points)

Data: sparse (space-points), non-local (magnetic
field integration)

Can Machine Learning (ML) provide a solution
that uses regular, simple algorithms, and is

naturally data parallel?
(idea born @ “Connecting the dots”, LBNL, Feb 2015)



Defining the Tracking ML Challenge

* One question (follow-up questions possible)
* One evaluation metric (training function)

» Two data samples: Training (labelled), Test
* One “starting kit” (reference solution)

Immediate Goal:
— Build a fast, scalable, pattern recognition engine

* Long-term Goal:
— Learn if-how-where to apply ML to reconstruction




Formulation of challenge is challenge itself

« What we want: given a list of 3D space-points, group them
to form charged particle tracks, minimizing the number of
wrong combinations of space-points, and maximizing the
number of charged particles found

* Metric:

— Positive weight for each space-point correctly assigned to track
— Negative weight for fake space-points

— Negative weight for algorithm complexity (proxy for execution time)

* How can timing aspects be taken into account?
— Adding them to the metric would require reference hardware

~ place the

challenge ? !
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Interesting follow-up questions
(Example: tracking in Run 4)

 How to communicate efficiently between HEP and ML communities?
— Series of dedicated and coordinated LHC ML challenges
« Building on top of each other
» Focusing on different aspects of the kind of problem we have in HEP
* Could become “standard problems” for ML community

— In addition: individual ML experts work within HEP and focus on dedicated
problems with a dedicated toolkit (most of them here in the room — hear
their feedback?)

 How to communicate efficiently between HEP experiments?
— Inter-Experimental LHC Machine Learning Working Group: http://iml.cern.ch

— Platform to collect, share and develop expertise, ask questions, common
software solutions, ...



Event classification: Deep Learning



1402.4735, 1410.3469

Example: DL & low-level inputs

« Apply Deep Learning to optimize event classification
— Searches for new physics
— Search for Higgs—tt
— Low level: momenta of final state objects

— High-level: nonlinear combinations: invariant mass, opening angle,
scalar sum of py, etc.

« Optimum: combination of low- and high-level variables
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Automatic fault detection / anomalies



Automatic fault detection / anomalies

« Need to flag data with poor quality (sub-detector not operational, corrupt
data,...)

— Compare hundreds of distributions (characterizing the data quality)
with references

— References evolve with time
— Perfect example for ML

« Dreaming out loud: search for New Physics = search for anomalies
(with respect to our Standard Model)

— ML as a generic search [ATLAS-CONF-2012-107] for anomalies?
— Huge phase space
— Correlated with anomaly due to poor data quality



Loose ends: HEP Particularities

Mismodeling: data vs. simulation

— Systematic uncertainties based on mismodeling uncertainty

— The better the classification the larger the deviation (showstopper, e.g. photon ID)

— (Limited) possibility to validate and calibrate MC to data
In MC we use data with a large variation in relative weights / neg weights — problems for training
Variable-length / non-continuous input feature phase space

We usually have a model based on our physics knowledge — this leads to two extreme
approaches:

— Matrix Element Method (MEM): rely on “calculable” part of model
— ML: let machine learn (still model dependence)
—  MEM pros & cons:

* Pros: no need to train, no need for large statistics, make us of maximum available
information

+ Cons: slow for complex final states, many approximations/simplifications of the model
needed

Can we combine ML and physics input in a smart way?

Features may vary significantly e.g. with p; or eta (analogy: facial expressions in face
recognition)



Conclusion / Final Thoughts

Promising opportunities for ML application in HEP,
and vice versa (cross-fertilization)

Reality check:
— Are we using state-of-the-art tools in HEP
— How close are we to the “best solution”

HEP computing needs will become more pronounced
in future: strong link with ML to prepare for it

— Systematic approach & know-how: how to apply
toolkit, tune algorithms, troubleshoot,...
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