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Hundreds of millions of proton-proton collisions 
(events) per second 

Petabytes of data 

Millions of readout-channels 
(correlated but sparse) 
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Thousands of particles 

ATLAS & CMS = Big Data	
  



Disclaimer 

•  Not meant to give a complete picture 

•  Rather give a few representative examples and 
identify a few key questions 

•  Target Data Science audience – introduce 
minimum of physics context needed 

•  The idea is to leave ample time for discussion 
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What we care about 
•  We are physicists, not data scientists 
•  We want to focus on physics (mainly) 
•  We want to make “optimal” use of our data – given some boundary 

conditions 
–  Performance: fully exploit information content in our data 
–  Given CPU, memory, statistics (simulation) limitations 
–  Minimize “re-inventing the wheel” i.e. make optimal use of person-

power, exploit synergies: applicability of one ML solution to another 
related HEP problem (b-jets ⇒ boosted objects) 
•  What tools/approach for what problem? 
•  Learn how to tune, validate and troubleshoot tool 

–  Complexity, tunability, robustness 
–  Gain understanding: are there features we haven’t used yet 
–  Use state-of-the-art tools: stay connected with ML community 
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Typical HEP problems	
  

•  Particle finding, reconstruction, classification 
–  B-jet ID (BDT, NN, ATL-PHYS-PUB-2015-022), tau ID (BDT, 

arxiv:1412.7086), electron ID (LH, ATLAS-CONF-2014-032),
… 

•  Event classification (see Mauro’s talk) 

•  Automatic fault detection 

•  Regression problems (see Mauro’s talk) 
–  Electron and photon energy calibration using BDT 

regression (arxiv:1407.5063) 
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Particle classification: b-jet identification	
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Tracking (from Vincenzo’s talk) 
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Example: b-jet Identification 
•  Compression of information: hits → tracks → jet-based quantities, e.g.: 

–  Displaced vertex 

–  b probability of jet as product of b track probabilities 

•  Inputs: we currently use jet-based quantities  

•  Output: b-jet or not using NN & BDT: mainly TMVA, also test AGILEPack (C++ framework for 
deep learning designed for HEP purposes by Luke de Oliveira: 
https://github.com/lukedeo/AGILEPack ) 
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b-jet non-b-jet

Origin

ATLAS-CONF-2011-102, ATL-PHYS-PUB-2015-022, ATLAS-CONF-2014-046 



Example: charm-jet Identification	
  
•  Based on the same main idea: “soft 

lepton" and “lifetime" 
•  More difficult than b-jet identification 

– charm-jets are “between" light 
and b in many distributions 
–  Shorter decay lengths for charm-

jets 
–  Fewer tracks than b-jets, hard to 

resolve displaced vertex 
•  JetFitterCharm (b-tagging retuned) 

–  Looser track selection 
–  New variables 
–  Used in 2 analysis [arxiv:

1501.01325, arxiv:1407.0608] 
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ATL-PHYS-PUB-2015-001 



Example: charm-jet Identification	
  

•  Define 2 discriminants 
based on 3 NN outputs: 
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ATL-PHYS-PUB-2015-001 



Interesting follow-up questions  
(Example: b-jets and charm-jets) 

•  Have we identified the best observables (minimally 
correlated, provide best predictive power) 

•  How to find / construct new observables (capture 
full feature space) 

•  Is it beneficial to go to lower-level input variables: 
track-based (variable length) 

•  How to go from a multi-class output (b, charm, light) 
back to individually tuned 2-class outputs (1 signal 
vs 2 backgrounds) given analysis needs 

•  Just began to apply Deep Learning 
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Particle classification: boosted objects	
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Example: boosted objects 
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Identifying boosted objects 
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Identifying boosted objects 
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Mihailo Backovic  (BOOST 2015) 



Identifying boosted objects 
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Mihailo Backovic  (BOOST 2015) 
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Identifying boosted objects 
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Identifying boosted objects 
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Mihailo Backovic  (BOOST 2015) 
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Identifying boosted objects 
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Identifying boosted objects 
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•  Essentially image recognition problem 
•  3D jet-image 
•  Calorimeter cells ~ pixels in a camera (use all available 

information for jet classification) 
•  Use computer vision classification algorithms (facial 

recognition)  
•  One difference: we have a model for the image – no model to 

recognize Brad Pitt’s face! 
•  NN [arXiv:1501.05968] 
•  Fisher discriminant with pre-processing [arxiv:1407.5675] 

–  Use subjets to align images: like eyes in a face  
–  Make use of symmetries: center, rotate, translate  



Multi-class problem: various boosted objects 
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Boosted objects: figure of merit 
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ATLAS-CONF-2015-036 



Boosted objects: figure of merit vs pT 
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ATLAS-CONF-2015-036 e.g. best performance for all pT vs. best performance for high pT only 



Interesting follow-up questions  
(Example: boosted objects) 

•  What are the upper bounds on discrimination 
– For a detector with perfect resolution (informing 

future detector designs) 

•  Are there higher-level features not yet 
captured in our observables? [arxiv:1407.5675] 
– Using huge amounts of statistics: finely binning in 

all known features and see if there are further 
features 

25	
  



HEP Machine Learning Challenges	
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Higgs ML Challenge	
  

•  Big success !  
•  1785 teams (1942 people) have 

participated  
•  6517 people have downloaded 

the data 
•  Most popular challenge on the 

Kaggle platform (until spring 
2015) 

•  35772 solutions uploaded 
•  136 forum topics with 1100 posts  

•  Similar challenge by LHCb 
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Solidifying Case for ML for HEP 

20-40% more data needed to get the same improvement 
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Interesting follow-up questions  
(Example: Higgs ML challenge) 

•  Learned a lot on interaction with ML 
community 
– Problem not too easy / not too complicated 

– Definition of figure of merit 

– Long-term planning: follow-up after challenge  

– Goal: just want a solution or reuse code  

•  K-fold cross validation to measure 
performance independently of training 
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K-fold cross validation 
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Particle finding: tracking in Run 4 
- case for another ML challenge	
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Tracking in Run 4 

CPU%offline%needs%
•  Current%LHC%(~2015):%
–  30%tracks%per%collision%
–  30%collisions%per%event%
–  1000%events/s%
– Need%to%find%1M(tracks/s(

•  Future%LHC%(~2025):%
–  30%tracks%per%collision%
–  200%collisions/event%
–  10000%events/s%
– Need%to%find%>60M(tracks/s((

To%cope%we%need%
a)  CPU%increase%to%be%at%most%linear%with%Ntrack%
b)  Moore’s%law%to%conPnue%%%2/9/15% Beate%Heinemann,%Berkeley% 7%

•  20x more tracks than now 
in Run 2 

•  x2-5 CPU shortage 
(offline) 

•  HEP pattern recognition 
techniques are more than 
25 years old 

•  Are there better tools out 
there? 
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Why is Parallel Tracking so hard? 

Algorithms: iterative (propagation, fitting), irregular 
(combinatorial searches with lots of branch points) 
 

Data: sparse (space-points), non-local (magnetic 
field integration) 
 

Can Machine Learning (ML) provide a solution 
that uses regular, simple algorithms, and is 
naturally data parallel?  
(idea born @ “Connecting the dots”, LBNL, Feb 2015) 
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Defining the Tracking ML Challenge 

•  One question (follow-up questions possible)	
  
•  One evaluation metric (training function)	
  
•  Two data samples: Training (labelled), Test	
  
•  One “starting kit” (reference solution)	
  

•  Immediate Goal:  
–  Build a fast, scalable, pattern recognition engine 	
  

•  Long-term Goal:  
–  Learn if-how-where to apply ML to reconstruction	
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ideal	
   real	
  

Where do we 
place the 
challenge ? 

Formulation of challenge is challenge itself 
•  What we want: given a list of 3D space-points, group them 

to form charged particle tracks, minimizing the number of 
wrong combinations of space-points, and maximizing the 
number of charged particles found 

•  Metric: 
–  Positive weight for each space-point correctly assigned to track 
–  Negative weight for fake space-points 
–  Negative weight for algorithm complexity (proxy for execution time) 

•  How can timing aspects be taken into account? 
–  Adding them to the metric would require reference hardware 
 

35	
  



Interesting follow-up questions  
(Example: tracking in Run 4) 

•  How to communicate efficiently between HEP and ML communities? 
–  Series of dedicated and coordinated LHC ML challenges 

•  Building on top of each other 
•  Focusing on different aspects of the kind of problem we have in HEP 
•  Could become “standard problems” for ML community 

–  In addition: individual ML experts work within HEP and focus on dedicated 
problems with a dedicated toolkit (most of them here in the room – hear 
their feedback?) 

•  How to communicate efficiently between HEP experiments? 
–  Inter-Experimental LHC Machine Learning Working Group: http://iml.cern.ch  
–  Platform to collect, share and develop expertise, ask questions, common 

software solutions,… 
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Event classification: Deep Learning	
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Example: DL & low-level inputs 
•  Apply Deep Learning to optimize event classification 

–  Searches for new physics 
–  Search for Higgs→𝜏𝜏 
–  Low level: momenta of final state objects 
–  High-level: nonlinear combinations: invariant mass, opening angle, 

scalar sum of pT, etc.  
•  Optimum: combination of low- and high-level variables 
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Automatic fault detection / anomalies	
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Automatic fault detection / anomalies 

•  Need to flag data with poor quality (sub-detector not operational, corrupt 
data,…) 
–  Compare hundreds of distributions (characterizing the data quality) 

with references 
–  References evolve with time 
–  Perfect example for ML 

•  Dreaming out loud: search for New Physics = search for anomalies 
(with respect to our Standard Model) 
–  ML as a generic search [ATLAS-CONF-2012-107] for anomalies? 
–  Huge phase space 
–  Correlated with anomaly due to poor data quality 
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Loose ends: HEP Particularities 
•  Mismodeling: data vs. simulation 

–  Systematic uncertainties based on mismodeling uncertainty 

–  The better the classification the larger the deviation (showstopper, e.g. photon ID) 

–  (Limited) possibility to validate and calibrate MC to data 

•  In MC we use data with a large variation in relative weights / neg weights – problems for training 

•  Variable-length / non-continuous input feature phase space 

•  We usually have a model based on our physics knowledge – this leads to two extreme 
approaches: 

–  Matrix Element Method (MEM): rely on “calculable” part of model  

–  ML: let machine learn (still model dependence) 

–  MEM pros & cons:  

•  Pros: no need to train, no need for large statistics, make us of maximum available 
information 

•  Cons: slow for complex final states, many approximations/simplifications of the model 
needed 

•  Can we combine ML and physics input in a smart way? 
•  Features may vary significantly e.g. with pT or eta (analogy: facial expressions in face 

recognition) 
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Conclusion / Final Thoughts 
•  Promising opportunities for ML application in HEP, 

and vice versa (cross-fertilization) 

•  Reality check:  
–  Are we using state-of-the-art tools in HEP 
–  How close are we to the “best solution” 

 
•  HEP computing needs will become more pronounced 

in future: strong link with ML to prepare for it 
–  Systematic approach & know-how: how to apply 

toolkit, tune algorithms, troubleshoot,… 
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