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Challenges: what we learned with HiggsML

What tool for what problem and Learn how-where to apply what MML
for HEP

e Crowdsourcing

« Finding a tool might be very difficult (1800+ submissions NIPS2015,
400+ accepted, 20+ workshops)

o Formulate your task as a machine learning problem, with adequate
data. Easier said than done, highly non trivial, requires a small, balanced
and dedicated team.

« Then a lot of people are eager to solve the problem

e Positive results
« Gradient boosting considered of interest as a method and a tool

« Also raised awareness about validation eg k-fold

e To improve

o Core ML-research involvement eg would be most beneficial for all
image-related tasks

« Challenges with a classical (proxy) objective function will be easier to
convert to a benchmark.
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The tools approach

e Can we do better with raw data ?

« The promise of deep learning: learning internal representation in place of
feature engineering

« From the limited experience of HiggsML, not exactly the case
« Best observables not necessarily minimally correlated

e Anomaly detection -> novelty detection = learning from positive and
unlabeled examples. Unlabeled data definitely help

e Cluster splitting Naive question: what about classical clustering (with very
large datasets)?

e Deep learning for event classification: what advantage do you expect (over
other classification methods)?

e Parallel tracking: muti-objective optimization — one figure of merit, but you
might want to ask for more information

e Systematics. Ongoing work at Orsay + IC on a principled ML formalization,
with practical methods to follow.
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The tools approach

Systematics. Ongoing work at Orsay + IC on a principled ML
formalization, with practical methods and benchmark dataset

(worked out from the HiggsML one) to follow soon: domain
adaptation

Data at training and test
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From Ganin et al., NIPS 2015

For effective domain transfer to be achieved, predictions must
be made based on a data representation that cannot
discriminate between the training (source) and test (target)
domains. Data representation = good motivation for DNN
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Vision

ML: input all information and let machine learn

e Basically true for supervised and non supervised learning— but active
learning critical for many real-world tasks, eg anomaly detection.
Experience in HEP?

e Reinforcement learning is about providing external feedback
And beyond Can we combine ML and physics input in a smart way?
Integration of a priori knowledge

e Most useful on an ad-hoc basis: identify/describe what is already
encoded in the simulation data, how it is encoded, and the residual.
Would greatly help for contributing to systematics analysis

e Bayesian approaches — ad hoc, of course we need it

e Inthelongrun, domain scientist in the loop: within reinforcement
learning, preference learning (related: apprenticeship learning)
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Vision

We are physicits, not data scientists. We want to focus on physics. We want to make
“optimal” use of our data.

e Just like Facebook, Google, all the finance industry, health industry, et al. Data
Scientist shortage is so terrible that IBM sells MLaaS — machine Learning as a
Service, on the Cloud...

In the next years, how do you entice the best and the brightest young ML?

Possibly, partially, tentatively: by giving them an opportunity to demonstrate they
actually are.

e LHC name is great, but ordinary results with impact on the real world are not
enough per se

e Fortunately, HEP real problems are strongly related to fundamental and active ML
qguestions, eg (a few)

» Systematics: infomation geometry: define/estimate/use « good » distance between
distributions

« Model selection and parameter tuning, quality (questions about upper bounds on
discrimination): beyond asymptotic analysis, data-dependent complexity estimates

« Your exotic learning objective functions: NP-learning, ranking
« Not knowing enough on the other themes, earger to learn about them.
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Conclusion

C' Paris-Saclay

Center for Data Science

Vision + tools = benchmarks
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