
Data Science  
in ALICE

Michele Floris (CERN)

for the ALICE collaboration


1



Data Science at the LHC 2015M. Floris

• Machine learning is in its infancy in ALICE


• Run I analysis mostly based on traditional approaches 


• Some attempts ongoing to apply advanced “data science” to detector signal 
processing and data analysis


• In general, increasing interests in these tools


• I will also show non-ML approaches

Introduction
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Outline 

• Heavy Ion Physics and the 
ALICE Experiment


• Application at “detector 
level” (tracking and PID)


• Applications to Physics 
Analysis


• Applications to Computing


• Summary
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Heavy-ion physics in a nutshell
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• “Condensed matter” studies of QCD


• Explore the phase diagram of QCD


• Characterize the deconfined phase 
of QCD matter (quark gluon plasma)


• Understand hadronization and        
hadro-chemistry


• How hadrons are produced from QGP


• Hadron mass generation in QCD


•  
• Experimental needs: low pT tracks, particle identification and flavor taging


• Extensive particle identification over broad momentum range


• Low pT tracking (“bulk” particle production and low pT heavy flavor)


• Colliding systems 

• Pb-Pb: “create” the QGP


• p-Pb, pp: control experiments, system size studies


• and many surprises at the LHC!
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Central Barrel 
2 π tracking & PID 

|η| < 1

The ALICE detector
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Particle identification (PID, many different techniques) 
Extremely low-mass tracker ~ 10% of X0 

Excellent vertexing capability 
Efficient low-momentum tracking – down to ~ 100 MeV/c

HMPID

ITS

TPC

TOF

Tracking and Particle Identification

5

Vertexing
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Challenges
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Very large charged tracks 
multiplicity: 
several thousand tracks in TPC in a 
head-on Pb–Pb collision at the LHC 

Data volume: 7 PB of data so far, 
twice that in MC, 3 PB Pb-Pb 2015 
expected  

Combine PID in broad momentum 
region (0.1–20 GeV/c) 

Key channels: very low              
signal-to-background

Areas of applicability of data science:  
“Detector Reconstruction and Signals” &  
“Signal optimization in physics analysis”



Detector: Track Reconstruction
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Track reconstruction (offline)
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Standard Kalman Filter 
Inward-outward-inward procedure to reduce combinatorics 

Bulk of data produced by TPC (80% of volume)

Int.J.Mod.Phys. A29 (2014) 1430044, arXiv:1402.4476
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Track reconstruction in the HLT
• Need for online cluster and track 

reconstruction in the High Level Trigger


• Data compression (factor ~4)


• Quality Assurance


• Parallelization and hardware 
acceleration


• FPGA-based cluster finder


• Parallel tracking


• Seeding based on “Cellular 
Automaton”


• Track following based on Kalman 
filter


• GPU-based algorithms


• HLT farm: 180 nodes, 4320 CPU 
cores
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IEEE TNS, 58(4), 1845–1851,  10.1109/TNS.2011.2157702
CNNA 2012 proceedings, 10.1109/CNNA.2012.6331460

1 computing node

http://dx.doi.org/10.1109/CNNA.2012.6331460
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Cellular Automaton
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Neighbors finder: 
segments of 3 clusters 

forming a straight line (“link”) 
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Cellular Automaton

10

Neighbors finder: 
segments of 3 clusters 

forming a straight line (“link”) 

Evolution step: 
Only reciprocal links are kept
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Cellular Automaton
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Neighbors finder: 
segments of 3 clusters 

forming a straight line (“link”) 

Evolution step: 
Only reciprocal links are kept

Chain of links for the track candidates → Kalman Filter
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Performance

11

Offline tracker

HLT tracker (CPU)

HLT tracker (GPU)

IEEE TNS, 58(4), 1845–1851,  10.1109/TNS.2011.2157702
CNNA 2012 proceedings, 10.1109/CNNA.2012.6331460

(cellular automaton) (kalman filter)

http://dx.doi.org/10.1109/CNNA.2012.6331460


Detector: processing of (PID) signals
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PID and heavy ions, analysis
• Can use statistical identification, but track by track needed for some 

studies


• Multidimensional “classification” problems:


• Extracting information for a single detector 


• Combining information from many detectors
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Electron identification in the TRD
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ALICE TRD: stack of 6 identical layers 
Electrons: larger signal and different time dependence

2008 JINST 3 S08002
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Truncated mean
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Tail at large deposited charge ⇒ contamination
Truncated mean (60% lowest charge clusters) 

significantly reduces tail and contamination

All clusters Truncated mean (60%)

(illustration purpose only) 

http://nbn-resolving.de/urn:nbn:de:hbz:6-97469411383

http://nbn-resolving.de/urn:nbn:de:hbz:6-97469411383


M. Floris Data Science at the LHC 2015

Likelihood and Neural Networks
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j=layer

k= e, π, k, p, …

1D Likelihood: start probability that a particle k deposits a charge Q

2D Likelihood: charged 
deposition in 2 time bins

Alternative: NN (MLP) with charge 
deposited in n time bins (TMVA based)
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Comparison of e/π distrimination methods
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MLP works better, but uses more information.  
7-dim likelihood performs as NN? 

Next: include track properties

Int.J.Mod.Phys. A29 (2014) 1430044, arXiv:1402.4476
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p

K
π

Combining Detectors: Bayesian PID
• Many PID detectors in ALICE: 

combination?


• Basic approach: rectangular 
cuts on PID variables (or nσ)


• Sub-optimal:


• Contamination depends 
on particle species 
abundances


• Non-gaussian features in 
the signal distributions


• Bayesian approach:


• Use knowledge of detector 
response and prior species 
abundances


• Determine priors iteratively

18

TPC+TOF
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Bayesian PID
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Probability that a 
particle i produces a 
signal S in a given 

detector

Combined P of many 
detectors

Invert with Bayes 
theorem, needs prior

Subtle effects (e.g. mismatch in the TOF) can be easily incorporated 

Probabilities can be used in physics analysis in various way: 
Fixed threshold, maximum probability, weights
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Iterative priors
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Rapid convergence, consistent with “unfolding” measurement 
Exact value of priors not critical for efficiency, but important if not 
negligible contamination

Priors can be determined 
iteratively 
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Bayesian PID and the D0 → Kπ
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3σ PID

no PID

Bayesian

Bayesian PID (maximum probability) improves significantly 
S/B in the study of the D0 → Kπ decay



First attempts to TMVA PID
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Idea: combine PID signals and info related to PID signals with MVA 
KNN, MLP, BDT tested, early results not conclusive 

Monte Carlo,     Signal = K±,     1.6 < p < 1.8 GeV/c

PID

Track  
Length

Track  
Quality
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γ/h and e/h Discrimination
• Photon/Hadron and Electron/Hadron cluster discrimination: promising area 

for the application of multivariate methods


• Current analysis based on: 


• E/p, matching to tracks and shape variables (EMCAL/PHOS) 


• Energy deposition and cluster size (PMD)


• MVA can improve purity, early attempts ongoing
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Photon Multiplicity Detector (PMD) 
2.3 < η < 3.7 

Improve photon identification using SVD or 
MLP from TMVA fed with 4 variables 

(cluster size and energy in veto detector 
and preshower) 

Improvement over traditional analysis: 
efficiency/purity 50-70% → 95% 

Caveat: more info used 



Signal extraction
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Signal extraction in low S/B environment

• Reconstruction of 2- and 3-prong decays 
in heavy ion collisions is challenging: large 
combinatorics


• Many (topological, PID, …) cut variables 
available, often complex correlations: ideal 
playground for multivariate methods


• Limited “real-life” application so far:


• Methods involved: hidden systematics?


• Need excellent control over training 
sample (typically MC)


• Not always clear gain with respect to 
traditional cuts analysis
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https://www.flickr.com/photos/mayaevening/138372058
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Invariant mass reconstruction

26

Particle identification cuts can be 
based on several sub-detectors (ITS, 
TPC, TOF…) 

Topological reconstruction of 
weakly decaying particles: 
•Decay radius 
•cos(θ) – pointing angle 
•Distance of their closest approach 

(DCA1 and DCA2) to Vprim 
•Distance of daughters at the point of 

closest approach (PCA ) 
•Armenteros-Podolansky variables 

Correlations among the cut variables
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Early attempts (~2006): Multicut-LDA
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ALICE-INT-2007-002, https://cds.cern.ch/record/1027337

1. Determine first LDA direction 
on full sample 

2. Determine second LDA 
direction on remaining directions 

3. Repeat

N.B.: before data taking and before TMVA

https://cds.cern.ch/record/1027337
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Early attempts (~2006): Multicut-LDA
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ALICE-INT-2007-002, https://cds.cern.ch/record/1027337

1. Determine first LDA direction 
on full sample 

2. Determine second LDA 
direction on remaining directions 

3. Repeat

Fisher criterion replaced by 
optimization criterion: given 
the desired efficiency, maximize 
BG removed 
Number of cuts tuned based 
e.g. on relative error

MC, D0 → Kπ

N.B.: before data taking and before TMVA

https://cds.cern.ch/record/1027337
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ΛC → Ks0p in p-Pb collisions

• Recent attempts based on TMVA, 
mostly BDTs 

• Several channels studied:


• Λ → pπ, Ks0 → ππ, ΛC → πKp, …


• Example discussed here: ΛC → KS0p


• 3-prong decay: large combinatorial BG 

28

p

π+ π-

ΛC

Ks0
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ΛC → Ks0p in p-Pb collisions

• Recent attempts based on TMVA, 
mostly BDTs 

• Several channels studied:


• Λ → pπ, Ks0 → ππ, ΛC → πKp, …


• Example discussed here: ΛC → KS0p


• 3-prong decay: large combinatorial BG 
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p

π+ π-

ΛC

Ks0

IPP

pT (p)
Bayesian PID

mππ

IPK

cτK
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BDT output
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BDT output distribution in data and 
MC reasonably similar 

Tuning repeated with BG from data 
(side bands) 

Separation not perfect, tail at low 
BDT values for the signal

Optimization of BDT parameters in progress



M. Floris Data Science at the LHC 2015

ΛC → Ks0: Results
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Significance improved by BDT 
Multi-dimensional selection criteria simplified 

Additional BDT systematics not dominant (large statistical error)



Quark vs Gluon Jet Discrimination

31
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A primer on jet quenching

32

Recoil jet loses energy when 
traversing the medium 

“Radiative” and “Collisional” 
energy loss 

ΔEg > ΔEu,d,s (Color factors) 

Distinguishing Quark and 
Gluon jets would allow to study 
microsopic process of energy 

loss in detail 

“RAA” is the simplest way of 
studying this modification
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A primer on jet quenching
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Recoil jet loses energy when 
traversing the medium 

“Radiative” and “Collisional” 
energy loss 

ΔEg > ΔEu,d,s (Color factors) 

Distinguishing Quark and 
Gluon jets would allow to study 
microsopic process of energy 

loss in detail 

“RAA” is the simplest way of 
studying this modification

R
AA

=
AA

rescaled pp
=

d2N
AA

/dpTdy

hN
coll

id2N
pp

/dpTdy



M. Floris Data Science at the LHC 2015

Quark-Gluon Jet Discrimination
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Jet shapes like angularities, radial moment or pTD show 
sensitivity to differences between quark and gluon fragmentation 

(Plots from: http://jets.physics.harvard.edu/qvg/)

http://jets.physics.harvard.edu/qvg/
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Tagging Jets with BDT
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Pythia Perugia 2011, particle level  
Anti-kT, R=0.2 

Variables input to BDT: pTD, girth, constituents, LeSub, Circularity
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MVA Jet Results
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Similar performance of the various methods
Purity and efficiency ~ 60%

Work in progress! Methods tested: BTD, PDERSD, Likelihood
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`

36

Pythia reproduces jet shapes 
(e.g. girth) in pp collisions
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`
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Pythia reproduces jet shapes 
(e.g. girth) in pp collisions

Shapes change in Pb-Pb,     
more “quark like” 

Different suppression of q and g? 
Modification of fragmentation?
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“Exotic” Application: Grid Security
• Feature space: monitoring metrics


• Resource consumption (Like CPU/
Memory)


• Connection information (TCP/IP)


• System calls 

• Machine Learning Method:


• Recurrent Artificial Neural Network 

• A cascade of several algorithms?


• Malicious samples:


• Run test Jobs → DoS, Bitcoin 
mining, botnet, malware, ...


• Capture metrics

37

CHEP2015, https://indico.cern.ch/event/304944/contribution/14 

https://indico.cern.ch/event/304944/contribution/14


• Several potential applications for machine learning techniques in ALICE


• Detector, reconstruction, physics analysis, computing


• Early attempts, no widespread use yet


• Signal extraction in analysis:


• Easier inclusion of additional information, seemingly better S/B performance


• “Black Box”: hidden systematics? Is it really better than traditional approach?

Summary

38
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Krintiras, Jaime Norman, Julien Faivre, Leticia Cunqueiro, Mike Sas, Michael Weber, Yvonne Pachmayer, Zaida 
Conesa Del Valle

Tom Gauld, https://flic.kr/p/9durkH

https://flic.kr/p/9durkH
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THE APPROVED ANALYSIS NOTE
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"

Thanks! Andrea Alici, Andres Gomez, Andrew Lowe, Chiara Zampolli, David Rohr, Davide Caffarri, Georgios 
Krintiras, Jaime Norman, Julien Faivre, Leticia Cunqueiro, Mike Sas, Michael Weber, Yvonne Pachmayer, Zaida 
Conesa Del Valle

Tom Gauld, https://flic.kr/p/9durkH

https://flic.kr/p/9durkH


Backup
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Armenteros-Podolanski
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