
Introduction to the HU Berlin MEM toolkit Data Science @ LHC Workshop | CERN · November 10th, 2015

Patrick Rieck · Oliver Maria Kind · Sören Stamm

Institut für Physik Humboldt-Universität zu Berlin Germany

Motivation

Task

- Set of measured collision events x (electrons, muons, jets, ...) to be compared with theory (simulated events)
- Distinguish hypotheses regarding the p.d.f.

$$f(\mathbf{x}|N_{S},\alpha) = \frac{N_{S}}{N_{S}+N_{B}}f_{S}(\mathbf{x}|N_{S},\alpha) + \frac{N_{B}}{N_{S}+N_{B}}f_{B}(\mathbf{x}|N_{B},\alpha)$$

- ► Does a certain process occur (N_S > 0)?
- What is the value of a certain parameter a?

Motivation

Task

- Set of measured collision events x (electrons, muons, jets, ...) to be compared with theory (simulated events)
- Distinguish hypotheses regarding the p.d.f.

$$f(\mathbf{x}|N_S, \alpha) = \frac{N_S}{N_S + N_B} f_S(\mathbf{x}|N_S, \alpha) + \frac{N_B}{N_S + N_B} f_B(\mathbf{x}|N_B, \alpha)$$

- ► Does a certain process occur (N_S > 0)?
- What is the value of a certain parameter a?

Challenge

- Complexity of collision events
- Similarity of signal and background processes

Motivation

Task

- Set of measured collision events x (electrons, muons, jets, ...) to be compared with theory (simulated events)
- Distinguish hypotheses regarding the p.d.f.

 $f(\mathbf{x}|N_{S},\alpha) = \frac{N_{S}}{N_{S}+N_{B}}f_{S}(\mathbf{x}|N_{S},\alpha) + \frac{N_{B}}{N_{S}+N_{B}}f_{B}(\mathbf{x}|N_{B},\alpha)$

- ► Does a certain process occur (N_S > 0)?
- What is the value of a certain parameter a?

Challenge

- Complexity of collision events
- Similarity of signal and background processes

Solutions

- Marginalization: reduction of f(x|N_{S0}, α0) to a one-dimensional function discriminating signal and background, use Machine Learning
- Approximation: simplified version of f(x|N_S, α), known as Matrix Element Method (MEM)

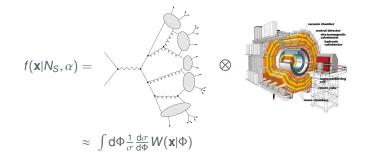
	Machine Learning	MEM
Speed	fast	slow
Requires sim. events	yes	no
Variation of α	not so easy	easy

Aim to show how to take advantage of the MEM in a standardized way: MEM toolkit developed at HU Berlin

> Status: not yet public, but shared upon request, collaboration is welcome

1. Concept

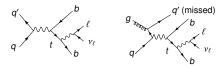
- Ansatz
- Implementation


2. Usage

- Configuration
- Input and output of events

Ansatz

- Approximation of the event p.d.f. by means of a factorization
 - Hard scattering fixed (leading) order perturbation theory
 - Hadronization, detector effects: parametrizations known as transfer functions



- Three building blocks to implement
 - Hard scattering cross sections $d\sigma/d\Phi$
 - Transfer functions W(x|Φ)
 - Phase space integration $\int d\Phi$

Hard scattering

- Leading order description, $d\sigma_{ij}/d\Phi = \frac{1}{2x_1x_2s}|\mathcal{M}_{ij}|^2$
- Amplitudes taken from the MCFM package
 - Many processes can be implemented
 - Incorporation not automatized
- Finite transverse boosts through bremsstrahlung additional scattering processes which constitute higher order corrections¹

- Example: s-channel single top-quark production with 2 and 3 final state partons
- In case of two measured jets: integrating over one of the partons without matching it to a jet

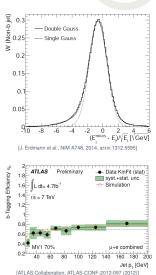
¹First NLO implementation of the MEM published as a proof of principle – T. Martini, P. Uwer, JHEP 09, 083, 2015, arXiv:1506.08798

Transfer Function

- W(x|Φ): p.d.f. of reconstruction of momenta x = {p_i^{reco}} given particle momenta {p_i}
- Matching particles to measured objects (electrons ↔ electron candidates, partons ↔ jets etc.)
- Single particle resolution function (if matched) with approx. flawless angular resolutions:

 $W_{\rm res}(\mathbf{p}^{\rm reco}|\mathbf{p}) = W^{\rm E}_{\rm res}(E^{\rm reco}|E) \cdot \delta\left(\cos\vartheta^{\rm reco} - \cos\vartheta\right) \cdot \delta\left(\varphi^{\rm reco} - \varphi\right)$

- Complete transfer functions including
 - Matching permutations
 - Reconstruction efficiencies
 - Resolutions


$$W(\mathbf{x}|\Phi) = \text{const} \cdot \sum_{i \in \{\text{permutations}\}} \prod_{j \in \{\text{matched}\}} W_{\text{res}}(\mathbf{p}_{ij}^{\text{reco}}|\mathbf{p}_{ij}) \varepsilon(\mathbf{p}_{ij}) \prod_{k \in \{\text{unmatched}\}} (1 - \varepsilon(\mathbf{p}_{ik}))$$

Transfer Functions

- Double Gaussian resolutions for e, μ and jetenergies, matching to LO parton level
- Fixing all angles, fixed e and μ-energies optional
- Can use *E*_t and φ_{*E*_t} transfer functions, matched to neutrino transverse momentum
- Incorporating reconstruction efficiencies
 - Single object transfer function:

 $\boldsymbol{\varepsilon}(\boldsymbol{p}) \cdot \boldsymbol{W}_{\text{res}}(\boldsymbol{p}^{\text{reco}} | \boldsymbol{p})$

- Includes b-tag efficiencies
- I − ε(p) for objects not reconstructed

Integration

Complete event likelihood:

$$f(\mathbf{x}) = \frac{1}{\sigma'} \sum_{p \in \{\text{permutations}\}} \int dx_1 dx_2 d\Phi \sum_{i,j} \frac{f_i(x_1) f_j(x_2)}{2x_1 x_2 s} |\mathcal{M}_{ij}|^2 W_p(\mathbf{x}|\Phi)$$

- Integration by means of Monte Carlo techniques using the VEGAS algorithm (importance sampling)
- Phase space integration ∫ dΦ using dedicated algorithms (W+n jets, single top, top pair production, ...), no general algorithm
- Proper likelihood normalization ∫ dx f(x) = 1, useful when discriminant functions are constructed from likelihoods based on different processes

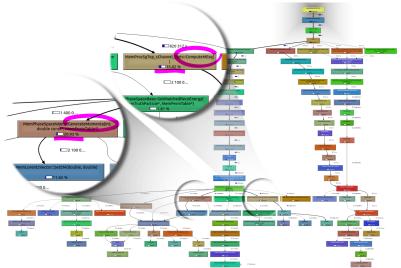
Software Design

- Designed from scratch using C++, dependencies:
 - ROOT
 - LHAPDF
 - CUBA (MC integration)
- Easy to extend due to modular code structure and inheritance from base classes for
 - Physics objects
 - Scattering processes
 - Phase space generations
 - Transfer functions

Easy to use

- Likelihood computation and I/O setup using simple ROOT C-scripts (see next part)
- Simplicity of I/O due to usage of common file format (ROOT ntuples, see next part)
- Not ATLAS specific

Scattering processes


Process	Max. jet multiplicity
Single top <i>s</i> -channel $2 \rightarrow 2$	2
Single top s-channel $2 \rightarrow 3$	3
Single top <i>t</i> -channel $2 \rightarrow 2$	2
Single top <i>t</i> -channel $2 \rightarrow 3$	3
$t\overline{t}$, single lepton	4
$t\bar{t}$, di-lepton $(N_{e,\mu}^{\text{reco}} \in \{1, 2\})$	2
WH, $H \rightarrow bb$	2
WHq, $H \rightarrow bb$	3
W+qq	2
W+qqq	3
W+cq	2
W+bb	2
W+bbq	3

Means	Explanation	
Compilation	Compiler options and version	
Profiling	Examine program execution (see next slide)	
Reduction of permutations	Use <i>b</i> -tag information	
Symmetrization of $ \mathcal{M} ^2$	For decays like $W \rightarrow qq, H \rightarrow bb$	
	instead of extra permutations	
Fast amplitude evaluation	Neglect spin correlations whenever reasonable,	
	narrow width approximation	
PDF caching	Faster than continuous access to LHAPDF	
δ functional resolutions	Simplifies integral (whenever reasonable)	
Phase space generation	Appropriate parameterization	
MC integration patur	Iteration frequency of importance sampling,	
MC integration setup	quasi-random vs. pseudo-random numbers	

MEM Speed-Up Profiling (Valgrind)

Process	Precision [%]	Time per event [s]
Single top <i>s</i> -channel $2 \rightarrow 2$	10	2
Single top <i>s</i> -channel $2 \rightarrow 3$	30	8
Single top <i>t</i> -channel $2 \rightarrow 3$	60	9
$t\bar{t}$, single lepton	20	9
<i>tī</i> t, di-lepton	20	9
W+qq	9	3
W+cq	9	5
W+bb	10	1

- Compromise between precision of MC integration and comp. time
- Analysis turn-around time in practice: O(2 weeks) (see lightning talk at the end of the session)

Summary

MEM toolkit for various (top-quark) processes

Advantages

- Easy to use (configuration, I/O)
- Transfer function efficiencies
- Different jet and lepton multiplicities
- Proper likelihood normalizations
- Sufficiently fast
 - Aim for a proper publication in the next months, private communication welcome at any time

Limitations

 Inclusion of scattering processes not automatized