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Machine learning, computer vision, !
and probabilistic models in jet physics!
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also known as…!
What can we learn from machine 

learning about jets?!

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y 
D

iff
er

en
ce

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
-310×

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1,  8 →p p 
 = 125 GeV

1,8
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1 →p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 8 →p p 
 = 125 GeV

8
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1 →p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 8 →p p 
 = 125 GeV

8
re-showered with Pythia 8, m

Thursday, November 12, 2015
Data Science @ LHC

SLAC-Stanford HEP-ML group

Luke de Oliveira1, Michael Kagan2, Carolyn Kim3,  
Lester Mackey3, Benjamin Nachman2, Francesco Rubbo2,  

Conrad Stansbury2, Ariel Schwartzman2, Michael Zhu3

1Stanford Institute for Computational and Mathematical Engineering (ICME) 
2SLAC National Accelerator Center, Stanford University 

3Department of Statistics, Stanford University



3
Generic overview slide

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Orientation Part I - -

beam into and 
out of the page

beam from 
left and right

f direction

f
h

h=0

h~angle from the vertical

h~1h~-1

h=∞

En
er

gy



4
Generic overview slide

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Orientation Part I - -

beam into and 
out of the page

beam from 
left and right

f direction

f
h

h=0

h~angle from the vertical

h~1h~-1

h=-∞ h=∞

En
er

gy



5
Generic overview slide

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Orientation Part I - -

beam into and 
out of the page

beam from 
left and right

“Unroll” the calorimeter - this is 
where we naturally think about jets.
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f
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er

gy
Jet: a collimated stream of particles resulting from 
the production of high energy quarks and gluons.

jets
Jets are ~circular in 
these coordinates

Orientation Part II
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- -

Jet structure contains information about the quarks & gluons 

Orientation Part III
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However, jets are not unique!
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Machine learning in jet physics - -
ML is no stranger to jet physics - custom unsupervised 

learning techniques are used to cluster jets.
See e.g. the anti-kt algorithm

ATLAS Jet Event Displays

However, the extensive ML toolkit can be used to enhance 
and enrich the study of jets and their substructure.

http://arxiv.org/abs/0802.1189
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApprovedBOOST2014EventDisplays
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Our philosophy - -
Optimization

Teaching the Learning

Learning from the Learning

The bottom line is performance, but also, can 
we build new, better (simple?) features?

(You have seen many teasers already!)
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We don’t want the ML to re-learn 
the basics of special relativity. 
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Figure 5.7.: The tagging performance of � relative to ⌧21 for separating W jets from back-
ground is considered on the right, with top from QCD background on the
left. In each case, � o↵ers additional performance, but does not outperform
n-subjettiness as a single variable, except at a signal e�ciency of roughly 0.85
in the Z 0 sample, where equal performance to ⌧32 is observed. � is still a highly
complementary variable to n-subjettiness, as can be seen in the left hand plot,
where at an 80% signal e�ciency using both variables improves QCD rejection
by a factor of two over using ⌧32 alone.
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(b) Fisher-Jet Discriminant Output

Figure 2: A Fisher’s linear discriminant presented as an image (left) and the distributions

of the discriminant output when applied to W-jets and Light-jets (right), when the FLD is

trained on jets with pT 2 [250, 300] GeV, mass M 2 [65, 95] GeV, and separation between

subjets of �R 2 [0.6, 0.8].

The background rejection vs. signal e�ciency curves for the FLD, computed using

the 1-D likelihood ratios of the output distribution of the FLD for W-jets and QCD jets,

can be seen in Figure 3a, along with the rejection vs. e�ciency curves observed when

using N-subjettiness (⌧2/⌧1) [7, 8] computed analogously with the 1-D likelihood ratios.

For the rejection vs. e�ciency curve in Figure 3a Fisher-jets are trained on jets satisfying

pT 2 [250, 300] in 6 bins of �Rjj , and a combined 1D likelihood ratio distribution is

computed by taking the likelihood ratio for each jet computed with respect to appropriate

�Rjj bin and merging these likelihood ratio values into a single distribution. The N-

subjettiness distributions are not binned in �Rjj as this did not show any improvements

in performance. Figure 3b shows the e�ciency of W jets at a fixed QCD jet rejection of 10

as a function of jet pT for the FLD (combining the 6 bins of �Rjj for each jet pT bin) and

for N-subjettiness. It can be seen that FLD outperforms N-subjettiness for the full range

of jet pT examined.

It should be noted that the output of FLD and N-subjettiness are correlated, as shown

in Figures 4a and 4b for W and QCD jets respectively, with a correlation coe�cient of

approximately 0.7 for both W and QCD jets. Thus, the Fisher-jet approach is able to

combine in a linear way the information comprising the jet e↵ectively, and capture much

of the information of N-subjettiness and more. On the other hand, mass, which relies

on quadratic relationships between the inputs, is a simple quantity which FLD does not

reproduce, as shown in Figures 4c and 4d for W and QCD jets respectively. Since the

Fisher-jet output is only slightly correlated with mass, with a correlation coe�cient of

approximately -0.25 for both W and QCD jets indicating a small degree of anti-correlation,

the performance of the classifier does not change dramatically whether it is applied to a

small window around the W mass, or to a sample without jet mass cuts.
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Goal: boost performance with domain-specific input.

The core of our work is to extract 
information about what the ML is learning.  
A key component of this is visualization.

Fig. Unrotated W jet image

Fig. Fisher jet from W versus QCD [2].

Fig. ROC from Fuzzy jets [1].
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Outline - -

Fixed 
representations

Learned 
representations

Example:"
Fuzzy jets

Example:"
Jet Images

C. Particle Assignment Schemes 54
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Figure C.1.: Each event display indicates the particle membership probability (linear
Voronoi cell shade) for the leading (blue) and sub-leading (red) p

T

fuzzy jet
in a Z

0 ! tt̄ decay. Lighter shades indicate lower membership probabilities
p

ij

, with white cells having p

ij

= 0, and fully colored cells p
ij

= 1. The parti-
cles assigned to each jet under the maximum likelihood scheme, where each
particle is assigned to the jet to which it has the maximum membership prob-
ability, are shown as black contours over the particles and cells.

Figure C.1 indicates how the membership probability landscapes for a particular event
can be quite complicated, leading to jets that have unusual shapes and catchment areas
under the ML particle assignment scheme. Additionally, as mentioned in section 6, the
catchment areas of jets can vary dramatically from event to event and from jet to jet. In the
right hand side inset of figure C.1, we see that the sub-leading p

T

fuzzy jet contains under
ML assignment almost all the particles that have non-vanishing membership probability
for the jet, a property which is not by any means universally true of the jets in figure C.1.

Of course, another perfectly valid option is to abandon classical variables and to let the
jet variables become random variables v

r

: R4n ⇥Rnk ! (⌦! Y

). The most natural choice
here is to let ⌦ = Rn so that particles contribute to the jet random variable v

r

according to
their membership probabilities p

ij

.

A final set of options is to assign particles in a “soft” manner, by splitting them according to

jet-images with di↵erent energies. This step is analogous to the standardizing the

lighting conditions of images.

5. Binning: In many cases, the expected jet-images may vary significantly with a

known variable; in this case, the variable can divide a class of jet-images into a set

of sub-classes with more uniform jet-images. For instance, if the total transverse

energy of the jet-image or the �R between the subjets causes significant variations,

jet images can be binned into di↵erent ranges of the variable. This is analogous to

separating images based on the facial expression. A di↵erent discriminant can then

be trained separately for each sub-class.

(a) Jet-image prior to rotation (b) Rotated pixel grid (c) Jet-image after projection

onto rotated grid, before transla-

tion

(d) Average jet-image, prior to

rotation

(e) Average jet-image, after pre-

processing

Figure 1: The preprocessing of jet-images and the impact on the average jet-image for

W jets in which the leading jet with pT between 200 and 250 GeV. Note that the grid

in figure 1c appears shifted down to represent the jet-image before translation, which is

subsequently translated such that the leading subjet lies in the location (Q1 ⇠ 1.5, Q2 ⇠
1.25) as see in the final average jet-image of figure 1e.

An example of the image preprocessing with jets from hadronically decaying W bosons

can be seen in Figure 1 plotted using the ⌘ and � coordinates of the pixels relative to

– 5 –

Fig. Processed W jet image [2].

Fig. Fuzzy jets from top quark events [1].



2. Mixture Model Jets 9

where x = x1, ...,xn are the observations (consisting for the moment of observations of par-
ticle positions (⌘,�)), ⇡

j

is the weight of cluster j so that
���
���
~

⇡

���
���
l=1 = 1 and �(x

i

|✓
j

) is a
probability density on the same space as the observations were drawn from (in our case
the surface of the calorimeter), parameterized by variables ✓

j

. Also highlighted in the ex-
pression is a quantity much like the likelihood L for a single one of the observations for a
given set of model parameters ✓, which will become important when we discuss optimiz-
ing to find maximal likelihood choices of the parameters ✓. We observe in eq. 2.1 that the
mixture density is a ~

⇡-weighted linear combination of the mixture components �(x
i

| ✓
j

).
The learning objective for the model is to maximize the likelihood, or equivalently the
complete log likelihood (CLL), over all observations as a function of the model parameters
✓

j

and mixture weights ⇡
j

, as given in eq. 2.1. Using the mixture density, the probability
p

ij

for a particular observation i being drawn from component j is calculated by

p

ij

=
⇡

j

�(x
i

|✓
j

)
P

k

l=1⇡l

�(x
i

|✓
l

)
,

and so can be thought of as the normalized probability “coming from” the component j of
the mixture density.

Fuzzy Jets is Mixture Modeling

Given distribution � with parameters ~µ + fixed number of clusters k , learn

p(~X ) =
kX

j=1

⇡
j

�(~X | ~µ
j

), ~
X ⌘ 4-vector of particle

Generative model for choosing particle locations by:

1  ⇠
i

 k ⌘ particle i ’s jet,

⇠
i

= j with probability ⇡
j

,
kX

j=1

⇡
j

= 1,

~
X

i

| ⇠
i

distributed according to �(~X
i

| ~µ⇠
i

).

Probabilities of membership
given by random variables ⇠

Basically: jets $ �
j

�5 �4 �3 �2 �1 0 1 2 3 4 5

�2
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�
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~ X
=
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1 � p

�
j
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⇣

~
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See also Bayesian Model-based Clustering

k = 3

�
1

~µ
1

�
2

~µ
2

�
3

~µ
3

Conrad Stansbury (SLAC) Fuzzy Jets February 11, 2015 5 / 27

Figure 2.1.: An example of the learned per-particle probability density specified in Eq. 2.1
with k = 3 and Gaussian � in n = 2 dimensions. The clusters are the individual
densities �

i

=�(µ
i

,⌃
i

) which are weighted by a prior density ⇡

j

.

In order for the mixture in eq. 2.1 to model the population of all observations, we would
hope that the shapes of the component distribution � should model the shape of the sub-
populations in the data. While this is ideal, in practice it is common to choose a normal
distribution with parameters ✓

j

=
⇣
µ

j

,⌃
j

⌘
, an m-dimensional mean giving the location of

Postulate an event likelihood and then 
minimize given the measured particles.

example likelihood with 
Gaussians and k = 3

In machine learning, 
this is called a 
mixture model
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Figure C.1.: Each event display indicates the particle membership probability (linear
Voronoi cell shade) for the leading (blue) and sub-leading (red) p

T

fuzzy jet
in a Z

0 ! tt̄ decay. Lighter shades indicate lower membership probabilities
p

ij

, with white cells having p

ij

= 0, and fully colored cells p
ij

= 1. The parti-
cles assigned to each jet under the maximum likelihood scheme, where each
particle is assigned to the jet to which it has the maximum membership prob-
ability, are shown as black contours over the particles and cells.

Figure C.1 indicates how the membership probability landscapes for a particular event
can be quite complicated, leading to jets that have unusual shapes and catchment areas
under the ML particle assignment scheme. Additionally, as mentioned in section 6, the
catchment areas of jets can vary dramatically from event to event and from jet to jet. In the
right hand side inset of figure C.1, we see that the sub-leading p

T

fuzzy jet contains under
ML assignment almost all the particles that have non-vanishing membership probability
for the jet, a property which is not by any means universally true of the jets in figure C.1.

Of course, another perfectly valid option is to abandon classical variables and to let the
jet variables become random variables v

r

: R4n ⇥Rnk ! (⌦! Y

). The most natural choice
here is to let ⌦ = Rn so that particles contribute to the jet random variable v

r

according to
their membership probabilities p

ij

.

A final set of options is to assign particles in a “soft” manner, by splitting them according to

Outcome: location and 
shape of jets 

!
Compute  

Pr(particle i ∊ jet j) 
!

There are no hard 
memberships!

Color intensity = probability of 
belonging to the red/blue jet
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Modification to 
the usual mixture 
model paradigm

a = 1 implies 
IRC safety

We now specialize the likelihood in Eq. (2.1) to the case of clustering particles into jets
at a collider like the LHC. Consider a mixture model in two dimensions4 with xi = ⇢i. The
resulting mixture model (MM) jets are inherently not IR safe: particle pT does not appear
in the likelihood and therefore arbitrarily low energy particles can influence the clustering
procedure. Therefore, we add a modification to the log likelihood:

log L({pT,i, ⇢i}|✓) =

mX

i=1

p

↵
T,i log

0

@
kX

j=1

⇡jf(⇢i|✓j)

1

A
, (2.3)

where ↵ is a weighting factor. Equation (2.3) is the log of Eq. (2.1) with the term p

↵
T,i

inserted in the outer sum. For ↵ > 0, the resulting modified mixture model (mMM) jets
are IR safe, and when ↵ = 1, the jets are C safe. Therefore, for ↵ = 1, the jets are IRC
safe. Different choices of component densities f in Eq. (2.3) give rise to different IRC safe
MM jet algorithms. We have studied several possibilities for f , but for the remainder of
this paper will specialize to (wrapped4) Gaussian f = �. The resulting fuzzy jets are called
modified Gaussian Mixture Model jets (mGMM) and are parameterized by the locations
µj , the covariance matrices ⌃i, and the cluster weights ⇡j . We initialize ⇡j = 1/k and
⌃j = I.

Since practical procedures for maximizing the modified likelihood in Eq. (2.3) may con-
verge to stationary points that are not globally optimal, the output of a fuzzy jet algorithm
will depend on an initial setting of the cluster parameters ✓ and ⇡. One simple procedure,
used exclusively for the rest of the paper, is to seed fuzzy jets based on the output of a
sequential recombination jet algorithm. This guarantees an IRC safe initial condition and
therefore the entire procedure is IRC safe. We now discuss practically how one can find the
maximum of the fuzzy jets likelihood.

4One must take care in selecting a class of densities appropriate for the angular quantity �. For more
details on the wrapped Gaussian distribution and motivation for its use in this context, see Appendix A.

– 4 –

f = Gaussian (as an example)

p = prior  
(initialized as uniform)

Learn: q and p

jet properties
number of jets

number 
of inputs
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--One technical slide: the (log) likelihood



a = 1 implies 
IRC safety

log L({pT,i, ⇢i}|✓) =

mX

i=1

p

↵
T,i log

0

@
kX

j=1

⇡jf(⇢i|✓j)

1

A
,

Learn: q and p

jet properties
number of jets

number 
of inputs

Algorithm must be insensitive to  
!

soft particles (IR-safe) "
collinear splittings (C-safe)"

!
  This modification does not spoil 
the ML and ensures IRC safety

We now specialize the likelihood in Eq. (2.1) to the case of clustering particles into jets
at a collider like the LHC. Consider a mixture model in two dimensions4 with xi = ⇢i. The
resulting mixture model (MM) jets are inherently not IR safe: particle pT does not appear
in the likelihood and therefore arbitrarily low energy particles can influence the clustering
procedure. Therefore, we add a modification to the log likelihood:

log L({pT,i, ⇢i}|✓) =

mX

i=1

p

↵
T,i log

0

@
kX

j=1

⇡jf(⇢i|✓j)

1

A
, (2.3)

where ↵ is a weighting factor. Equation (2.3) is the log of Eq. (2.1) with the term p

↵
T,i

inserted in the outer sum. For ↵ > 0, the resulting modified mixture model (mMM) jets
are IR safe, and when ↵ = 1, the jets are C safe. Therefore, for ↵ = 1, the jets are IRC
safe. Different choices of component densities f in Eq. (2.3) give rise to different IRC safe
MM jet algorithms. We have studied several possibilities for f , but for the remainder of
this paper will specialize to (wrapped4) Gaussian f = �. The resulting fuzzy jets are called
modified Gaussian Mixture Model jets (mGMM) and are parameterized by the locations
µj , the covariance matrices ⌃i, and the cluster weights ⇡j . We initialize ⇡j = 1/k and
⌃j = I.

Since practical procedures for maximizing the modified likelihood in Eq. (2.3) may con-
verge to stationary points that are not globally optimal, the output of a fuzzy jet algorithm
will depend on an initial setting of the cluster parameters ✓ and ⇡. One simple procedure,
used exclusively for the rest of the paper, is to seed fuzzy jets based on the output of a
sequential recombination jet algorithm. This guarantees an IRC safe initial condition and
therefore the entire procedure is IRC safe. We now discuss practically how one can find the
maximum of the fuzzy jets likelihood.

4One must take care in selecting a class of densities appropriate for the angular quantity �. For more
details on the wrapped Gaussian distribution and motivation for its use in this context, see Appendix A.

– 4 –

1 QED

1

1 QED

1
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Domain specific modification
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Figure 5.1.: A representative event display for a Z

0 ! tt̄ event. In the left hand plot, gray
circles show the location and size of mGMM fuzzy jets after clustering, with
the size of the circle indicating 1-� contours in the calorimeter; the black cir-
cle indicates the highest p

T

jet with ML particle assignment. In each case, the
events have been rotated in � to place the truth top quark 3⇡/2, which is indi-
cated by a red star. Anti-k

t

jet locations are shown with gray crosses in the left
hand plot, the long tail of which points towards the mGMM jet for which it
was a seed. The sizes of particles are proportional to log(p

T

). In the right hand
plot, anti-k

t

R = 1.0 jets passing a 5 GeV p

T

cut are shown as discs under the
particles indicating their active area, with centers the same as the crosses in the
left hand side. Shades of gray in the anti-k

t

discs have no scale and are meant
to aid the eye, but go from low p

T

(lighter) to high p

T

(darker). The bottom
plot shows the Voronoi approximation of the fuzzy jet catchment areas, with
di↵erent colored regions indicating the ML particle assignment to fuzzy jets.

Fuzzy Jets anti-kt

Initialize the EM algorithm 
with anti-kt jets

(in general they can vary in shape, but we using circles here)
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Fuzzy jets vary in size and can overlap!
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Figure 5.5.: The learned value of � for the highest p
T

jet under the ML scheme (left) and
for all jets (right) for the three physics processes studied.
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Figure 5.6.: The left and right plots show the correlation between � and the leading jet
anti-k

t

mass divided by p

T

in an anti-k
t

p

T

window of 350 to 450 GeV for Z 0 !
tt̄ and QCD Monte Carlo samples respectively. Indicated in the lower right of
each figure is the correlation between the variables over the full p

T

window.
Although there is strong correlation between these two variables, there is a
significant component of � uncorrelated to m/p

T

. There are two peaks in the
correlation for the Z 0 ! tt̄ sample because the anti-k

t

mass spectrum has peaks
at both m

t

, the top mass, and m

W

, the W boson mass, depending on which
decay product had the higher p

T

according to the anti-k
t

R = 1.0 jet definition.

One useful variable is the size s of the leading fuzzy jet

The leading size scale with m/pT whereas the generic fuzzy 
jet is rather independent of the process (and is large).
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Figure 5.7.: The tagging performance of � relative to ⌧21 for separating W jets from back-
ground is considered on the right, with top from QCD background on the
left. In each case, � o↵ers additional performance, but does not outperform
n-subjettiness as a single variable, except at a signal e�ciency of roughly 0.85
in the Z 0 sample, where equal performance to ⌧32 is observed. � is still a highly
complementary variable to n-subjettiness, as can be seen in the left hand plot,
where at an 80% signal e�ciency using both variables improves QCD rejection
by a factor of two over using ⌧32 alone.

“N-subjettiness” 
(powerful N-body 

decay feature)
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What can you learn with fuzzy jets?
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The jet image

jet-images with di↵erent energies. This step is analogous to the standardizing the

lighting conditions of images.

5. Binning: In many cases, the expected jet-images may vary significantly with a

known variable; in this case, the variable can divide a class of jet-images into a set

of sub-classes with more uniform jet-images. For instance, if the total transverse

energy of the jet-image or the �R between the subjets causes significant variations,

jet images can be binned into di↵erent ranges of the variable. This is analogous to

separating images based on the facial expression. A di↵erent discriminant can then

be trained separately for each sub-class.

(a) Jet-image prior to rotation (b) Rotated pixel grid (c) Jet-image after projection

onto rotated grid, before transla-

tion

(d) Average jet-image, prior to

rotation

(e) Average jet-image, after pre-

processing

Figure 1: The preprocessing of jet-images and the impact on the average jet-image for

W jets in which the leading jet with pT between 200 and 250 GeV. Note that the grid

in figure 1c appears shifted down to represent the jet-image before translation, which is

subsequently translated such that the leading subjet lies in the location (Q1 ⇠ 1.5, Q2 ⇠
1.25) as see in the final average jet-image of figure 1e.

An example of the image preprocessing with jets from hadronically decaying W bosons

can be seen in Figure 1 plotted using the ⌘ and � coordinates of the pixels relative to

– 5 –

Simple, but powerful paradigm proposed by M. Kagan et al. [2]  
  

Idea: use image processing techniques on jets!
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Pre-processing and the symmetries of space-time

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

Translations in h 
are boosts along z
Translations in f are 
rotations in space

Radiation is symmetric 
about the jet axis

Real detectors are 
already pixelated!

Need to convert the 
rotated grid into a grid!

Parity symmetry 
about the jet axis
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Pre-processing and the symmetries of space-time

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

Translations in h 
are boosts along z
Translations in f are 
rotations in space

Radiation is symmetric 
about the jet axis

Real detectors are 
already pixelated!

Need to convert the 
rotated grid into a grid!

Parity symmetry 
about the jet axis

Image Preprocessing 

13"

•  Use subjets of  large radius jet as focal points ! like eyes in an image 
•  Make use of  symmetries ! Center, Rotate, and Flip 
•  Introduces some smearing, but huge gain in discrimination! 

Average of  
unrotated W jet 
 
Not much info! 

Average of  
rotated W jet 
 
Much better! 
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Pre-processing and the symmetries of space-time
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(distribution peaked at the W boson mass)
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Intuition via analogy

In both pictures, total intensity of 
Einstein’s face is about the same.  

However, his face’s image 
mass is quite different!

Photos from: http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

bright"
side

dark "
side uniform moderate 

intensity

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein
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Intuition via analogy

In both pictures, total intensity of 
Einstein’s face is about the same.  

However, his face’s image 
mass is quite different!

Photos from: http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

bright"
side

dark "
side uniform moderate 

intensity

In standard computer 
vision, you likely don’t 
want to be sensitive to 
this! …not the case for 

jet images!

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein
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Where is the discrimination?
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The jet image paradigm allows us to visualize this information!
less pronounced second subjet
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Where is the discrimination?

You can see the physics!

gluon jet background 
is a color octet, 
diffuse radiation

The distance 
between subjets 

is slightly different

less pronounced second subjet
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Now for some ML: Linear Discriminant Analysis 
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(b) Fisher-Jet Discriminant Output

Figure 2: A Fisher’s linear discriminant presented as an image (left) and the distributions

of the discriminant output when applied to W-jets and Light-jets (right), when the FLD is

trained on jets with pT 2 [250, 300] GeV, mass M 2 [65, 95] GeV, and separation between

subjets of �R 2 [0.6, 0.8].

The background rejection vs. signal e�ciency curves for the FLD, computed using

the 1-D likelihood ratios of the output distribution of the FLD for W-jets and QCD jets,

can be seen in Figure 3a, along with the rejection vs. e�ciency curves observed when

using N-subjettiness (⌧2/⌧1) [7, 8] computed analogously with the 1-D likelihood ratios.

For the rejection vs. e�ciency curve in Figure 3a Fisher-jets are trained on jets satisfying

pT 2 [250, 300] in 6 bins of �Rjj , and a combined 1D likelihood ratio distribution is

computed by taking the likelihood ratio for each jet computed with respect to appropriate

�Rjj bin and merging these likelihood ratio values into a single distribution. The N-

subjettiness distributions are not binned in �Rjj as this did not show any improvements

in performance. Figure 3b shows the e�ciency of W jets at a fixed QCD jet rejection of 10

as a function of jet pT for the FLD (combining the 6 bins of �Rjj for each jet pT bin) and

for N-subjettiness. It can be seen that FLD outperforms N-subjettiness for the full range

of jet pT examined.

It should be noted that the output of FLD and N-subjettiness are correlated, as shown

in Figures 4a and 4b for W and QCD jets respectively, with a correlation coe�cient of

approximately 0.7 for both W and QCD jets. Thus, the Fisher-jet approach is able to

combine in a linear way the information comprising the jet e↵ectively, and capture much

of the information of N-subjettiness and more. On the other hand, mass, which relies

on quadratic relationships between the inputs, is a simple quantity which FLD does not

reproduce, as shown in Figures 4c and 4d for W and QCD jets respectively. Since the

Fisher-jet output is only slightly correlated with mass, with a correlation coe�cient of

approximately -0.25 for both W and QCD jets indicating a small degree of anti-correlation,

the performance of the classifier does not change dramatically whether it is applied to a

small window around the W mass, or to a sample without jet mass cuts.

– 9 –

Fisher Discriminant 
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•  Take Fisher 
solution and plot 
it’s components on 
image grid 

•  Fisher-Jet! 

•  Used for 
discrimination 

•  Can be visualized 
and explored to 
understand physics 
of  discrimination! 

 

Analogous to facial recognition with Fisher Faces, construct a 
Fisher Jet:

Direction in the n x n image space that maximizes the 
between class variance over the within class variance

The discriminant is the projection of 
any image onto the Fisher Jet

Directly interpretable!
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Introduce a non-linearity

Add in a coarse DR 
binning to surpass t21

Performance 

23"
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Slightly worse performance as N-subjettines out-of-the-box;

Image analogy: eyes 
get further apart the 
farther away you are! 
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout
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Performance

Out-performs standard and well-performing features.  
Maxout out-performs Convnet (more on this shortly)  
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Performance and a first look at what is learned
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A first indication that the networks are efficiently learning 
angular information, but not all there is about the jet mass.

(N.B. only 3 coarse bins of mass are needed to achieve the boost!)
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Learning about learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Advantage of CNN is that we can visualize the filters

Data very sparse; convolution paradigm does not work as 
intended (need large filters). 

!
However, we can apply the new technique for visualization learned information 

by convolving the filters with the images
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“Learned” t21 !
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middle



49- -
Generic overview slide

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging

Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Learning about learning

There is clearly something learned beyond (mass and) 
t21.  There is certainly physics to learn: colorflow, etc.    
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Learning about learning

Pixel-by-pixel correlation between the network output 
and pixel intensity: linear in z-axis but non-linear 

spatial information.  There is clearly some information 
about the colorflow embedded in the neural network!
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-What can be gained by looking at data in new ways?

-How to adapt ML algorithms to physics?

Fisher Discriminant 
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•  Take Fisher 
solution and plot 
it’s components on 
image grid 

•  Fisher-Jet! 

•  Used for 
discrimination 

•  Can be visualized 
and explored to 
understand physics 
of  discrimination! 

 

Translated h

Our goal: Continue to use powerful ML 
techniques to learn about physics at the LHC

Physics meets Computer Vision: Jet Images
-Powerful discrimination

-Intuitive visualization to understand what 
physics has been learned
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- -The Future
Beyond optimizing discrimination, can we learn 

what ML algorithms learn about physics?

Blurring jet clustering algorithms with Fuzzy Jets
-IRC safe likelihood-based approach to jet clustering

We have shown two examples:
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Food for thought - mixture modeling on a cylinder - -

A Wrapped Gaussian

In the EM algorithm described in Sec. 3, there are explicit (and implicit) dependencies on
the topology. For instance, if a Gaussian density is used to model �, then, in the E step, a
particle with �i near 2⇡ will be deemed far from a cluster with location �j near 0. To avoid
this undesirable behavior and enforce the equivalence of the angles 0 and 2⇡, we associate
� with a wrapped Gaussian density and y with a standard Gaussian density:

�(y, �|µ�, µy, �
2
) = �y(y|µy, �

2
)

1p
2⇡�

2

1X

I=�1
exp

�(� � µ�(I))

2

2�

2

�
, (A.1)

where �y is a normal distribution and µ�(I) = µ� + 2⇡I. In order to approximate the
sum in Eq. (A.1), we take only the leading contribution by choosing µ�(I

⇤
) for I

⇤
=

argminI0 |� � µ� + 2⇡I

0|. As other contributions are exponentially suppressed, this is a
good approximation and recovers continuity near 0 and 2⇡. Figure 13 illustrates the im-
proved clustering behavior that results when � is modeled using the wrapped Gaussian
approximation in place of the standard Gaussian density.
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Figure 13. A three-particle event display illustrating the results of fuzzy jet clustering using a
Gaussian density for � (left) and a wrapped Gaussian density approximation for � (right).
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Figure 3.1.: An illustration of of the EM algorithm for k = 2, courtesy Benjamin Nachman.
By eye, the data shows two natural clusters, which are rapidly converged upon
by initially poorly located Gaussian clusters. In the E-step, darker colors cor-
respond to higher value of p

i,blue jet, so that particles with high membership to
the red jet may not appear in insets on the left hand side of the boxed pairs.

Running fuzzy jets clustering

To minimize the IRC safe likelihood, we use an iterative 
procedure called the EM algorithm (illustrated below)

E step: Given jet locations, compute the probability for a particle i to belong to jet j.
M step: Given the probabilities, compute the jet properties of jet j.
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Figure 5.5.: The learned value of � for the highest p
T

jet under the ML scheme (left) and
for all jets (right) for the three physics processes studied.
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window of 350 to 450 GeV for Z 0 !
tt̄ and QCD Monte Carlo samples respectively. Indicated in the lower right of
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Although there is strong correlation between these two variables, there is a
significant component of � uncorrelated to m/p
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. There are two peaks in the
correlation for the Z 0 ! tt̄ sample because the anti-k
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The leading size scale with m/pT, but is not exactly 
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What is the relationship to anti-kt quantities?
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triangles), and prevents widening of the � distribution in pileup conditions somewhat worse than
during Run 1 at the LHC.
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Pileup


