Packaging with Homebrew

THERUNITV HRS] I r



at Does Homebrew Do?

Homebrew installs the stuff you need that Apple didn't. brew install wget

Homebrew installs packages to their own directory and then — e
symlinks their files into /usr/local. find Cellar

Cellar/wget/1.16.1
Cellar/wget/1.16.1/bin/wget
Cellar/wget/1.16.1/share/man/manl/wget.1

1s -1 bin
bin/wget -> ../Cellar/wget/1.16.1/bin/wget

Homebrew won't install files outside its prefix, and you can
place a Homebrew installation wherever you like.

Trivially create your own Homebrew packages. e T T T T e e
Created /usr/local/Library/Formula/bar.rb

Ruby-based package manager http://brew.sh



http://brew.sh

. Get Homebrew ..

$ git clone https://github,com/Homebrew/homebrew brew.git

A A

A A

. Add brew.git/bin to your PATH .
Add additional repository (“tap 1n brewspeak) ..
brew tap homebrew/science

install ROOT with fftw ..
brew install root —with-fftw
root

install Geant4 with GDML ..
brew install geant4 -with-gdml

some time later ..
brew update
brew upgrade

Easy to use workflow, identical

User/lnS'I'u"er cuse to that of other systems

(MacPorts, yum, apt)



https://github.com/

$ brew create http://proj-clhep.web.cern.ch/.../clhep-2.2.0.4.tgz
... opens ‘clhep.rb’, edit it...

class Clhep < Formula
homepage "http://proj-clhep.web.cern.ch/proj-clhep/"
url "http://proj-clhep.web.cern.ch/proj-clhep/DISTRIBUTION/tarFiles/clhep-2.2.0.4.tgz"

shal "60a291b940fdc78bead4aaeaffcld’7cc25a42cfef™ .
Can use Binary Packages

bottle do known as “bottles”
cellar :any

shal "5466fbee57b366a4l1lbbcec814614ee236e39bed8" => :yosemite
shal "bde270764522e4a1d99767ca759574a99485e5ac" => :mavericks
shal "e77d@e5f516cb41ac061el1050c8f37d0fbo65b796" => :mountain_lion

end
Note support for
depends_on "cmake" => :build C++ Standard as
option :cxx11l
dependency

def install
ENV.cxx11 if build.cxx11?
mkdir "clhep-build" do
args = std_cmake_args
args << "-DCLHEP_BUILD_CXXSTD=c++11" 1f build.cxx11?
system "cmake", "../CLHEP", *args
system "make", "install"
end
end
end

“Build Protocol” is a simple
Pud(uger cuse I Ruby script called a Formula




. Test 1nstall package dropping to interactive shell on

error
brew 1nstall —-vd clhep

. Can also do full 1interactive 1install with local git

A A

$

g

repo for patches ..
brew install —-interactive —git clhep

when everything’s working and the Formula 1s ready ..
git add Library/Formula/clhep.rb

git commit -m “clhep: new formula”

. A new version arrives ..
brew edit clhep

git commit -m “clhep: new version A.B.C.D”

Interactive testing, Git control of

Packager Case 2 | package niscorcs




Evaluation for SuperNEMO and Dune

« SuperNEMO approach: Fork homebrew, adapt formula
to requirements, rolling release with git tags to snapshot
for production points (very early days here)

« https://github.com/SuperNEMO-DBD/cadfaelbrew

* DUNE approach: Provide tap containing custom
formulae(e.g. Art), otherwise use upstream (e.g. gcc)

- https://github.com/drbenmorgan/homebrew-dunebrew

» So far so good, but still lots to look at and try out


https://github.com/SuperNEMO-DBD/cadfaelbrew
https://github.com/drbenmorgan/homebrew-dunebrew

Why (Not) Homebrew?

» Works out the box on Mac and Linux

* Extremely easy to use and add new packages

« Good support for build variants and C++ Standards

* Only provides a single rolling release

* Doesn’t directly support git tags or rollback on versions

- Binary packages not completely relocatable(*)



On Build Protocols

- == File(s) specifying package’s

- Metadata (hame, version,
dependencies etc)

« Steps required to get, patch,
configure, build, test install

- Examples

« RPM Specfile

« Homebrew Formula

“hello.spec”

Name: hello

Version: 2.10

Source@: <base>/%{name}-%{version}.tar.gz
BuildRequires: gettext

%prep

%build
%configure
make

%install
%make_install

“hello.rb”

require “formula”

class Hello < Formula
url <base>/hello-2.10.tar.gz
depends_on “gettext” => :build

def install

system “./configure”, “—prefix=#{prefix}”
system “make”, “install”
end



HSF Prollloc0|? With “build.sh”

require “formula”
class MyPkg < Formula
url <base>/mypkg-1.0.0.tar.gz

« “build.sh” on HSF GitHub: An

“ > depends_on “zlib” => :build
adaptor” layer between

package manager and build gt Instal
ENV[“HEP_COMPILER”] = #{ENV.cxx}
tool? ENV[“HEP_SOURCEDIR”] = #{buildpath}

ENV[“HEP_BUILDROOT”] = #{buildpath}
ENV[“HEP_INSTALLROOT”] = #{prefix}
ENV[“HEP_ARCH”] = hardware.is_64_bit? ? “x86_64”

- However, that’s exactly what
Specfiles/Formulas are. ENV[“ZLIB_ROOT”] = #{opt_prefix}/zlib

.. and so on ..

system “./build.sh”

* Likely to end up writing an end
adaptor for an adaptor because WithoUt..
assumptions of a “build.sh” def install

: - # This 1s essentially what “build.sh” does..
won't match up with all system “./configure”, “-prefix=#{prefix}”,

packaging systems “—zlib-root=#{opt_prefix}/zlib”
system “make”, “install
end


http://hardware.is

