

Pulsed Multipole Injection for the MAX IV Storage Rings

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

MAX IV Injection Overview

 Full-energy (underground) linac drives short pulse facility & delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring

- Full-energy (underground) linac drives short pulse facility & delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring
- Thermionic RF gun (S-band) with RF chopper injects at 10 Hz

- Full-energy (underground) linac drives short pulse facility & delivers top-up shots to two storage rings: 3 GeV storage ring and 1.5 GeV storage ring
- Thermionic RF gun (S-band) with RF chopper injects at 10 Hz
- SR injection interrupts SPF operation (photogun @ 100 Hz) → re-phase linacs & ramp extraction magnets
- Two dedicated vertical (achromatic) transfer lines
- Injection into rings (100 MHz) via DC Lambertson septum
- Inject bunches with $\varepsilon_n = 10 \text{ mm mrad}, \sigma_{\delta} = 0.1\%$

Low Emittance Rings 2015 Workshop, September 15–17, 2015

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

MAX IV Injection Requirements

- Ring injection occurs at 10 Hz (governed by SR damping time)
 - Each 100 ns linac shot consists of up to 10 bunch trains (10 × 10 ns, governed by linac field uniformity [SLEDs])
 - Each bunch train can contain up to 60-100 pC
 (3-5×20 pC @ 3 GHz) depending on ring RF settings (injection phase acceptance)

MAX IV Injection Requirements (cont.)

- Ring injection occurs at 10 Hz (governed by SR damping time)
 - Each 100 ns linac shot consists of up to 10 bunch trains $(10 \times 10 \text{ ns}, \text{governed by linac field uniformity [SLEDs]})$
 - Each bunch train can contain up to 60-100 pC
 (3-5×20 pC @ 3 GHz) depending on ring RF settings (injection phase acceptance)

➡This results in 0.6-1 nC (0.3-0.6 mA in 3 GeV ring) per linac shot or injection at 6-10 nC/s (3.4-5.7 mA/s in 3 GeV ring) at 100% efficiency

MAX IV Injection Requirements (cont.)

• Total lifetime in rings is ≈10 h @ 500 mA

56 h inelastic
25 h elastic
>24 h Touschek (depending on IDs, coupling, RF)

- 176 bunches → 5 nC/bunch for 500 mA (1.5 GeV ring: 32 bunches)
- Assuming ≈100% injection efficiency, two scenarios define limits for 3 GeV top-up injection:
 - 60-100 pC (1 bucket) every ≈2.5 sec → 0.007% deadband (0.034 mA)
 - -1% deadband (5 mA) \rightarrow 8.81 nC (15 shots) every 6 min
 - Since extraction magnet ramping takes ≈2 sec, the latter has been the preferred option → top-up injections take ≈2% of overall linac time from SPF
- In general, need to consider implications for filling pattern homogeneity vs. "quiet time", requirements on gun/injector reliability, user preferences, etc.

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

Injection & Capture

- Original design: conventional 4-kicker bump injection
- But worried about stored beam stability during top-up
 - 200 nm vertical stability requirement
- Also worried about complexity

- strong sextupoles & octupoles within bump: bump can only be properly closed for one energy and amplitude
- -4 kickers and septum require lots of space

- Intrigued by KEK's pioneering work on PQM and PSM
 - align only a single magnet to stored beam
 - synchronize only one pulser to injection
 - PSM field flat around stored beam
 - minute perturbation of stored beam by PSM

PRST-AB 10, 123501 (2007)

PRST-AB **13**, 020705 (2010)

Magnetic field at 15 mm	40 mT
Magnetic length	300 mm
Bore diameter	66 mm
Peak current	3000 A
Pulse length	1.2 / 2.4 µs

- Decided to use pulsed sextupole magnet injection for top-up injection into both MAX IV storage rings
 PRST-AB 15, 050705 (2012)
- Strong nonlinearities in MAX IV storage rings → tracking (Tracy-3, DIMAD): optimization of beam position/angle in septum & location/strength of PSM

12/34

Low Emittance Rings 2015 Workshop, September 15–17, 2015

- Decided to use pulsed sextupole magnet injection for top-up injection into both MAX IV storage rings
 PRST-AB 15, 050705 (2012)
- Strong nonlinearities in MAX IV storage rings → tracking (Tracy-3, DIMAD): optimization of beam position/angle in septum & location/strength of PSM

- Decided to use pulsed sextupole magnet injection for top-up injection into both MAX IV storage rings
 PRST-AB 15, 050705 (2012)
- Strong nonlinearities in MAX IV storage rings → tracking (Tracy-3, DIMAD): optimization of beam position/angle in septum & location/strength of PSM

≈1.2 mrad to minimize reduced invariant

≈0.8 mrad sufficient for capture within (design) acceptance

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

- Decided to use pulsed sextupole magnet injection for top-up injection into both MAX IV storage rings
 PRST-AB 15, 050705 (2012)
- Strong nonlinearities in MAX IV storage rings → tracking (Tracy-3, DIMAD): optimization of beam position/angle in septum & location/strength of PSM

15/34

Low Emittance Rings 2015 Workshop, September 15–17, 2015

- Decided to use pulsed sextupole magnet injection for top-up injection into both MAX IV storage rings PRST-AB 15, 050705 (2012)
- Strong nonlinearities in MAX IV storage rings → tracking (Tracy-3, DIMAD): optimization of beam position/angle in septum & location/strength of PSM
- PSM gradient not an issue because of low injected emittance (linac: $\varepsilon_n = 10 \text{ mm mrad} \rightarrow \varepsilon_x = 1.7 \text{ nm rad}$; SR: $\approx 0.3 \text{ nm rad}$, $\approx 11 \text{ mm mrad}$ acceptance)
- Capture shows significant tolerance to injection errors (low injected emittance in conjunction with comparably large ring acceptance)

10

 Decided to use pulsed sextupole magnet injection for top-up injection into both MAX IV storage rings
 PRST-AB 15, 050705 (2012)

- But tolerances are tight for fully transparent top-up injection
 - Requirement for low perturbation: excellent alignment & negligible residual fields/gradients
 - Alignment adjustment can be beam-based via orbit bump
 - Girder design to facilitate beam-based re-alignment of the PSM

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

Reference Design for a MAX IV PSM

- Initially, attempted a solid iron PSM following KEK design
 - make use of reduced gap required in MAX IV
 - symmetry required to minimize stored beam perturbation
 - cannot accommodate for aspect ratio of BSC
- 300 mm length → 20.6 J stored energy
 - − 3.5 µs pulse in 3 GeV ring → 19.3 kV

Magnetic field at 4.7 mm	39 mT
Magnetic length	300 mm
Bore diameter	32 mm
Peak current	2125 A
Pulse length	3.5 µs

— but in 1.5 GeV ring: 640 ns pulse length calls for 93 kV (even at 400 mm length)

18/34

PAC'**13**, WEPSM05

Reference Design for a MAX IV PSM (cont.)

- Short pulse duration leads to very large pulser voltage (320 ns revolution period in 1.5 GeV storage ring → 640 ns pulse duration)
- Two-turn injection relaxes requirements, but makes injection even more optics-dependent

A Better Idea: BESSY Nonlinear Kicker

- Pulser voltage requirements can be lowered if stored energy in kicker magnet is reduced → give up solid iron magnet
- BESSY nonlinear injection kicker prototype

P. Kuske, Top-up WS, Melbourne, 2009 IPAC'**11**, THPO024, p.3394

20/34

- stripline-like design with 4 low-impedance coils
- minimize stored beam perturbation (octupole-like around center)

Low Emittance Rings 2015 Workshop, September 15–17, 2015

The MAX IV Multipole Injection Kicker

- In 2011 entered collaboration with SOLEIL in association with HZB to develop a new nonlinear injection kicker for MAX IV based on the original BESSY concept
 - BESSY kicker most efficient if injected beam placed at location of maximum kick (≈11 mm at BESSY II, but only ≈5 mm in MAX IV)
 - Maximum kick can be moved closer to stored beam if vertical separation between inner rods is reduced

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

The MAX IV Multipole Injection Kicker (cont.)

- In MAX IV did however not want to introduce such a vertical acceptance limitation → injection kicker vertical aperture specified like narrow-gap chambers for EPUs (±4 mm)
- In conjunction with design of ceramic chamber (insulator) and conductor cross-section requirements, this puts inner conductors separation at ±7 mm → max kick at ≈10 mm

The MAX IV Multipole Injection Kicker (cont.)

 But thanks to low-emittance injection from MAX IV linac, can inject on slope without sampling too much gradient

Field data for tracking extracted from OPERA models (static & transient) including 4 μm Ti coating (OPERA model courtesy P. Lebasque, SOLEIL)

PAC'**13**, WEPSM05

The MAX IV Multipole Injection Kicker (cont.)

- Injected beam and stored beam see octupole-like field
- 39 mT delivered to injected beam at 4.7 mm as required
- Stored beam perturbation remains negligible

• Note: acceptable residual gradient at stored beam is independent of emittance ($\approx 0.3 \text{ T/m}$ at MAX IV) $\frac{\partial B_y}{\partial x}\Big|_{res} < 10\% \times \frac{B\rho}{\beta_x L}$

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

x' [µrad]

Technology: Vacuum Chamber

- Mechanical & vacuum design delivered by SOLEIL
- Unlike BESSY prototype, the SOLEIL design for the MAX IV multipole kicker has a complete ceramic vacuum vessel without metallic walls (→ minimize field distortions)
- Horizontal aperture of the chamber increased → no synchr.
 radiation on chamber → air cooling

Technology: Vacuum Chamber (cont.)

- Main difficulties with mockup have been
 - precision-machining of ceramics with grooves for Cu rods (±10 μm position accuracy required for Cu rods)
 - dielectric rigidity & mechanical strength (increased vessel thickness compared to BESSY prototype, 1 → 2 mm at thinnest location)
 - groove profile & groove milling
 - cracks as a result of thermal shocks and/or mechan.
 stress in connection with the polymerization process (gluing ceramic strips to fix Cu rods in grooves)

- Leading to an improved design for the final specification
 - direct-bonding of two chamber halves (single-crystal sapphire)
 - CFT in Feb 2015, supplier selection June 2015, chamber delivery expected by end of 2015, Ti coating @ ESRF

Technology: Coils & Pulser

- EM modeling & power electronics simulations by SOLEIL
- Unlike BESSY prototype, the SOLEIL design for the MAX IV multipole kicker has all 4 coils connected in series (field imbalance)
- HV switches (IGBT, 4×2400 A) and diode modules (10×1500 A) received; HV capacitor (2×1100 nF) charging PSs ordered
- Mechanical and electrical assembly design complete
- Controls hardware installed in cabinets & PLC circuits tested
- Controls software (Tango) under development

Magnetic field at 4.7 mm	39 mT
Magnetic length	300 mm
Full apertures	47 × 8 mm
Peak current	≈7.7 kA
Pulse length	3.5 µs
Required charging voltage	≈15 kV

27/34

Electrical diagram removed at request of SOLEIL (intellectual property concern)

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015

Outlook

- Expect arrival of multipole injection kicker in early 2016
- Installation in MAX IV 3 GeV storage ring shortly thereafter
- Initial storage ring commissioning can be carried out with single dipole kicker (cf. Tuesday presentation)
- Multipole kicker for 1.5 GeV ring has been temporarily delayed because of additional challenges:
 - 640 ns pulse \rightarrow very high voltage required \rightarrow revisit pulser design?
 - reconsider original goal to use same chamber in both rings?
 - reducing vertical acceptance allows substantial reduction of required current (due to nonlinear nature of kicker) → relax voltage

Final Thoughts

- Our solution shoehorned into a previously designed conventional injection scheme with 4 dipole kickers
 - Septum installed at downstream end of injection straight
 - Our multipole kicker is in 2nd straight, after one full achromat
 - Iimits optics tuning and makes commissioning more difficult
- If we could do it from scratch: put it all into injection straight
 - septum at upstream end
 - injection kicker at downstream end (can inject at slight angle)

Final Thoughts (cont.)

- Nonlinear injection requires aggressive engineering
- Ideally should bring rods even closer to stored beam (≈2 mm)
 - needs excellent coupling control
 - possibly less demanding in cases where this is a retrofit (vertical acceptance well understood and prior operational experience with in-vacuum IDs)

Final Thoughts (cont.)

- Key to nonlinear injection: low-emittance injection into comparably large ring acceptance
 - Low-emittance injection can be realized via
 - linac (costly if not otherwise required... FEL)
 - large circumference in-tunnel booster e.g. SLS (cheap and simple, yet reliable)
 - Large acceptance requires ring with decent DA
- Note: on-axis vs. off-axis injection → either way cannot relax
 DA requirements substantially
 - In MAX IV want ≈5% MA, but have ≈8 cm max dispersion → need ±4 mm horizontal acceptance to ensure sufficient MA
 - Horizontal DA required for off-axis injection is ≈5 mm
 - → only ≈1 mm to be gained

Final Thoughts (cont.)

- However, on-axis injection with fast dipole kickers is nevertheless very appealing in 100 MHz rings because of naturally large bunch separation
- Off-energy on-axis injection in MAX IV studied by M. Aiba and colleagues at SLS PRST-AB 18, 020701 (2015)
 - robust against machine errors
 - single-bunch injection at minimal DA requirements
 - no swap-out, no dumping, and no accumulator required
 - can top up fractional bunch charge

Acknowledgements

- P. Lebasque, O. Dreßler, P. Kuske, P.F. Tavares, L.O. Dallin
- Many more colleagues at SOLEIL and MAX IV involved in the design and prototyping efforts for the MAX IV – SOLEIL multipole injection kicker

Photo courtesy L. Jansson, August 24, 2015

Thanks for your attention!

Simon C. Leemann Low Emittance Rings 2015 Workshop, September 15–17, 2015 Photo courtesy L. Jansson, August 24, 2015

