

ESRF Upgrade Technical design & system integration

JC Biasci

Low Emittance Rings 2015 Workshop 15-17 September 2015

- I. New Lattice issues
- II. Girders & supports
- III. Vacuum Chambers
- IV. Magnets
- V. Straight sections
- VI. Conclusion

I. LATTICE CONSTRAINTS

Present ESRF Double Bend Achromat:

- 2 dipoles + 15 quad., Sext.) per cell
- ID length : 5m, 6m, 7m

ESRF II Hybrid 7 Bend Achromat:

- 4 dipoles + 3 dipoles-quad + 24 quad., sext., oct) per cell
- ID length : 5m

I. CHALLENGES

- Must fit in the same tunnel : same circumference
- IDs at same locations: keep BLs where they are
- Re-use injector complex
- Use conventional magnets technology

	Now	ESRF II	D
Energy (GeV)	6.04	6	
Multibunch current (mA)	200	200	
Circumference (m)	844.39	843.98	
Horizontal emittance (pm- mrad)	4000	150	
Vertical emittance (pm-mrad)	4	5	

ESRF I Storage ring commissioning started in February 1992

Existing drawings

2D autocad

ESRFI

- 3D CATIA
- Hand made drawings
- Booster
- SR tunnel

Inventory

ESRE II Drawings update (Solidworks)

- Solidworks 3D models
 - SR tunnel
 - Reference drawings ...

Definition of design rules

I. GLOBAL SCHEDULE

Nov 2012 Nov 2012-Nov 2014 June 2014

White paper Technical Design Studies Council decision

Jan 2015-Oct 2018 Dec 2018-Sep 2019 Sep 2019-June 2020 June 2020

Detailed design & procurement Shutdown for installation Commissioning User Mode Operation

II. GIRDERS

INPUT DATA

• Girder length = 5.1m, magnets weight = 3.500kg

GIRDER PROJECT SPECIFICATION

- Motorized Z adjustment resolution 5μm
- Manual Y adjustment resolution 5μm
- 1st natural frequency = 50Hz (design criteria)

Challenges

- Lack of space
- Stability & motorized Z adjustment

II. GIRDERS – MAGNETS SUPPORTS

• Girder 2

II. GIRDERS – PROTOTYPE TESTS

III. VACUUM CHAMBERS

III. VACUUM CHAMBERS

III. VACUUM CHAMBERS

Page 12 Low Emittance Rings Workshop - 15-17 September 2015 - JC Biasci

III. VACUUM CHAMBERS INSTRUMENTATION

	Penning	RGA head	Pirani	IP	NEG pump	Prepumping port
CH1	1	1	1	75 l/s ⁻¹	1	1
CH2	0	0	0	75 l/s ⁻¹	2 *200 l/s ⁻¹	1
СНЗ	1	1	0	150 l/s ⁻¹	/	0
CH4	0	0	0	75 l/s-1	/	1
CH5	1	0	0	55 L/s ⁻¹	400 l/s ⁻¹	0
CH6	0	0	0	150 l/s-1	200 I/s-1	1
CH7	1	0	0	2 * 55 l/s ⁻¹	/	0
CH8	0	0	0	75 l/s ⁻¹	200 l/s ⁻¹	1
СН9	1	1	1	75 l/s ⁻¹	2 *200 l/s ⁻¹	0
СН10	1	0	0	150 l/s ⁻¹	/	1
CH11	0	0	0	0	1	0
CH12	0	0	0	/	200 l/s ⁻¹	0
CH13	1	0	0	75 l/s ⁻¹	2 *200 l/s ⁻¹	1
CH14	1	0	1	75 l/s ⁻¹	1	1

III. PHOTON ABSORBERS

- ~480 photon absorbers for SR
- ~30 special absorbers for straight sections
- ~90 absorbers, collimators for Front-ends

Some design considerations

□ Maximum Temperature < Tmelt/2

□ Maximum stress < Yield strength (YS)

□ OFHC copper or CuCrZr preferred rather Glidcop

Brazing issues:

lower YSofhc=70 MPa make the absorber design challenging if we want to optimise

Technique without brazing preferred (CuCrZr)

IV. MAGNETS

Magnet type		Quantity	Field strength		Iron length	
Dipoles with longitudinal gradient	DL	128	0.17-0.67	Т	1788	mm
Dipole quadrupoles	DQ	96	0.43-0.54 34	T T/m	1078	mm
Moderate gradient quadrupoles	Q	384	52	T/m	162-295	mm
High gradient quadrupoles	Q	128	85	T/m	388-484	mm
Sextupoles	S	192	900-2200	T/m²	204	mm
Octupoles	Ο	64	51.2 10 ³	T/m ³	120	mm
Correctors H(V)	С	96	0.08	Т	120	mm

- Quantity (Manufacturing time)
- Design required detail level
- Raw material
- Manufacturing difficulty (tolerances)
- Required space around the magnet
- Stay clear area (vacuum chambers)
- Fiducialization strategy
- Fixation system
- Electrical & water connections

DX horizontal perpendicular to the beam **DY** vertical perpendicular to the beam **DS** along the beam

Page 15 Low Emittance Rings Workshop - 15-17 September 2015 - JC Biasci

Alignment tolerances						
Required:	DX	DY	DS	DPSI	DK	
	mm	mm	mm	mrad	10^-4	
DL	>100	>100	1000	500	10	
DQ, QF[68]	70	50	500	200	5	
Q[DF][1-5]	100	85	500	500	5	
SFD	70	50	500	1000	35	
n OF	100	100	500	1000		

STORAGE RING – MAGNETS

DL

- Permanent magnets with machined yoke
- Support allowing to remove DL during bakeout

Quadrupoles

- Quarter yokes machined independently
- +/- 20 µm tolerance expected after assembly
- Quarter yoke assembly: solutions to be tested (accuracy, repeatability)
- Technical issues
 - Raw material cost & procurement
 - Machining tolerances
 - Manufacturing Time

STORAGE RING – MAGNETS

Sextupoles

- •Laminated magnet
- 1st Engineering design completed in May 2014
- •No major technical issues
- •Girder fixation not easy due to small length

DQ Dipole Quadrupoles

- 3D model complete
- Engineering design in progress
- Mechanical prototype to be ordered end 2014
 - technical issues:
 - Machining tolerances

Octupoles & Correctors

- no major technical issues
 - Octupole prototype received

STORAGE RING - MAGNETS

More than 1000 Magnets to be procured

132 dipoles

99 dipole-quadrupoles

196 sextupoles

66 octupoles

100 correctors

398 low gradient quadrupoles

130 high gradient quadrupoles

Lot of different straight sections

- 1 7m canted
- 6 6m (2 canted)
- 9 with In-vacuum undulators
- 3 RF
- 12 Others (standard 5m)
- 1 Injection

Each section is different and needs to be looked at in detail

- Transitions
- RF fingers
- Internal profiles
- In-vacuum undulators inside components, water cooling channels...

Straight sections upgrade

Time & resource consuming <u>during</u> machine shutdown

VI. CONCLUSION

General

- context
- Lattice constraints
- Global schedule

Girders & supports

- Girders
- Chambers supports
- BPM supports
- Magnets supports

Vacuum

- Vacuum chambers
- Photon absorbers
- Diagnostics
- Straight sections
- Instrumentation

Magnets

- Design modification need careful check
- Global schedule

- Girders
 - Good flatness
 - Timescale (128 Girders)

- Challenging vacuum chambers
 - Tolerances
 - Timescale
- Conventional absorbers
 - No brazing as far as possible
- Integration with vacuum chambers
 - Large Quantity
 - Timescale

MANY THANKS FOR YOUR ATTENTION

