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Lattice goals and constraints

 Hard constraints
– ID and BM beamlines at same angle as now
– Respect engineering limits on magnet strength
– Respect space requirements from vacuum design, including diagnostics
– Sufficient injection aperture for on-axis injection using swap-out mode and existing 

injector

 Goals
– Emittance less than 70 pm
– Preserve fill pattern that supports timing experiments
– 4.8 m free space for insertion devices
– Vertical beta functions at IDs close to ideal (for aperture) 2.4m in vertical
– Horizontal beta functions at IDs not too large (<10m) to improve brightness
– Small beta functions throughout to reduce effective transverse impedance
– Lifetime >4.8 hours at 200 mA and 6 GeV, to nominally obviate the need for 

supplemental shielding 
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Hybrid 7BA Lattice Concept1

Longitudinal gradient dipoles

Transverse
gradient dipoles

Dispersion bump
w/sextupoles

Dispersion bump
w/sextupoles

 Phase advance of Δφx=3π and Δφy=π between corresponding sextupoles chosen to cancel 
geometrical sextupole kicks

 Thick, interleaved sextupoles → cancellation isn't perfect 1: L. Farvacque et al., IPAC13, 79.
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Optimization with Tracking-Based Multi-Objective Genetic 
Algorithm1,2

 Tracking-based optimization allows directly optimizing lattice and sextupoles for
– Large dynamic acceptance
– Large Touschek lifetime (via local momentum acceptance)
– Desired positive chromaticity

 Unlike theoretical approaches, can include
– Effects of likely errors
– Effects of radiation damping and longitudinal motion
– Vacuum chamber apertures

Tracking-based MOGA optimization
makes significant improvements
starting from ESRF-II scheme.

Starting point

1: See citations in M. Borland, IPAC12, 1035.
2: M. Borland, et al. J. Synch. Rad 21, 912-936 (2014).
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Tracking-Based Optimization Details1

 DA and LMA tracking performed with parallel elegant2

– Track for 400 turns including rf and synchrotron radiation
• More details of tracking methods described in CDR

– One function evaluation takes ~1 hour on 32 cores using 400-turn tracking
– Lifetime computed from LMA with touschekLifetime3

• Assume a nominal (50 ps rms) bunch length and ignore IBS for now
 The algorithm is (typically) allowed to vary 

– Linear optics, using either
• Direct variation of gradients
• Variation of linear optics targets (e.g., emittance, tunes, beta functions)

– 10 sextupole strengths (out of 12 present in two sectors)

 Goals are
– DA to accommodate booster beam with on-axis injection

• Expect σ
x
=0.65 mm, σ

y
=0.2 mm → need ±2 mm by ±0.6 mm

– Lifetime of >4.8 hours in 48 and 324 bunch modes at 200 mA
• Motivated by scaling of existing shielding design

1: See citations in M. Borland, IPAC12, 1035.
2: Y. Wang and M. Borland, AIP Conf. Proc. 877 (2006).
3: A. Xiao and M. Borland, PAC07, 3453.
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“Best” MOGA Result

 DA comfortably exceeds ±2mm by ±0.6mm goal
 LMA consistent with lifetime of >10 hours in 324 bunch mode with 100% 

emittance ratio and 50-ps rms bunch duration
 MOGA optimizes configuration to handle specific error ensemble

– Check with more ensembles
– Also, must add multipole errors and ID kickmaps
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Nonlinear Dynamics Evaluation Methodology

 Basic goal: evaluate with many error ensembles to ensure robustness
 Used 100 error ensembles with correction

– Simulates the commissioning process

 DA/LMA tracking same as MOGA runs, but
– 1000 turns instead of 400 (better convergence)
– Element-by-element synchrotron radiation

 Add multipole errors, levels taken from various sources
– Systematic or allowed multipoles from magnetic models
– Random or unallowed multipoles from

• Scaling of measured NSLS-II errors1, or
• Halbach theory for determining random multipole errors from mechanical errors2.

 In some cases, include
– Insertion devices
– Alternatives for ID apertures

 After tracking completes
– DAs analyzed to find percentile contours over all ensembles
– LMAs used to compute Touschek lifetime for each ensemble

1: A. Jain, private communication.
2: K. Halbach, NIM A 74, 147 (1969).
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Sensitivity to Multipole Errors

 Conclusion:
– Multipole errors do not excessively impact DA or lifetime
– Most errors could be increased with little negative impact
– Good to maintain quad random errors at nominal levels

 Case 0: no multipole errors
 Case 1: nominal multipole errors
 Case 4: double quad random errors

200 mA, 324 bunches,
50-ps rms duration,
round beams including
IBS
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Beam Dynamics with HHC1,2,3

 Assumed above that bunch duration is 50 ps
– Zero-current natural length is ~12.5 ps
– Lengthens to 20-35 ps with longitudinal impedance
– Must use harmonic cavity to further lengthen bunch and improve lifetime

 Detailed studies performed using parallel elegant, including
– Beam-loaded main rf system with feedback system
– Passive bunch lengthening cavity
– Longitudinal impedance
– 48- and 324-bunch fill patterns

 Studies include
– Variation of HHC loaded Q and detuning
– Effect of filling from zero
– Effect of bunch population variation
– Effect of kicking out a bunch
– Multibuch stability

 Time permits showing only a few highlights
1: M. Borland et al., IPAC15, MOPMA007.
2: T. Berenc et al., IPAC15, MOPMA006.
3: L. Emery et al., IPAC15, TUPJE065.
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Scan of HHC detuning

 As expected, bunch lengthens as HHC cavity is tuned toward resonance
 “Beneficial” effect of MWI visible for 48-bunch mode
 As bunch lengthens with decreased detuning, MWI is suppressed and energy 

spread drops
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Longitudinal density averaged over 2000 turns (48B)
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Touschek Lifetime Analysis

 Two dominant lifetime effects are Touschek and gas scattering
– Of these, Touschek is typically the most important

 Above analysis of Touschek scattering made some assumptions
– Notional bunch lengthening to 50-ps rms, gaussian shape
– Emittance increase from IBS computed from this base

 Using results of tracking with HHC, can improve Touschek lifetime estimates
– Uses new slice-based Touschek lifetime calculation1 in touschekLifetime
– Computations provide a Touschek lifetime value for each error ensemble, averaged over 

many bunch samples
– Method not fully self-consistent, but allows combining effects of IBS, HHC, and 

microwave instability
• Fully self-consistent studies planned in future

1: A. Xiao and M. Borland, IPAC15, MOPMA012.
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Touschek Lifetime Distributions

 In both cases, have 200 mA, QL=600k, κ≈1

 For 48 bunches, get factor of 1.7 for 15.5 kHz detuning
– Bunch is already significantly lengthened by the ring impedance

 For 324 bunches, get factor of 3.7 for 15.5 kHz detuning
 Some additional benefit from pushing to lower detuning

– Have to watch for double-bunching, higher coupler power
– Use 15.5 kHz for subsequent calculations

48 bunches 324 bunches
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Commissioning Simulation1

 Commissioning involves coming to grips with imperfections of the real machine
 Performed a realistic simulation of commissioning steps, including

– Error generation (see table)
– First-turn trajectory correction and first orbit correction
– Orbit correction with reduced BPM displacement errors

• Reflects expected improvement from beam-based alignment

– Beta function correction based on response matrix fit 
– Coupling correction (minimizing cross-plane response matrix)
– Emittance ratio adjustment to 10% at separated tunes

 Algorithm has ~98% success rate
– Use results to determine robustness of nonlinear dynamics

These error levels
appear readily 
achievable based on
recent experience,
e.g., NSLS-II.

1: V. Sajaev et al., IPAC15, MOPMA010
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Swap-out Injection

 On-axis “swap-out” injection1,2,3 is an alternative to accumulation
– Each injector shot replaces an existing stored bunch
– DA must accommodate only the injected beam size

 Swap-out seems advantageous on balance
– Pro:   Smaller horizontal physical apertures possible in IDs

  Emittance can be pushed to smaller values

  Less disturbance to stored beam

– Con:  Single-bunch current limited by injector capability
  Maximum number of bunches limited by fast kicker technology

1: E. Rowe et al., Part. Accel. 4, 211 (1973).
2: R. Abela et al., PAC91, 486 (1992).
3: L. Emery et al., PAC03, 256 (2003).

 Injection efficiency is simulated directly
– 100 static optical and multipole error 

ensembles, as above
– Realistic beam distribution from booster, 

with optical errors
– Injection trajectory errors and pulsed 

power supply jitter
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Alternate lattice development

 Nominal lattice 
– emittance pushed to the lowest achievable value
– dynamic acceptance not large enough for accumulation
– on-axis swap-out injection is the only workable method

 Alternate lattice work follows two directions
– Possibility for off-axis accumulation
– Lower-emittance lattices

Swap-out injection Accumulation

53-pm
Reverse bends

67-pm
Nominal lattice

90-pm
Alternate lattice

76-pm
Reverse bends

Increased β
at injection

...
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53pm swap-out injection lattice with reverse bends 

 Reverse bends in Q4, Q5, and Q8
 Emittance reduced from 67 pm to 53 pm
 Dx from 70 mm to above 80 mm
 Nonlinear optimization is ongoing but initial results show  improved 

performance compared to the 67pm lattice
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90pm lattice with accumulation

 Emittance is 90pm compared to 67pm for the nominal lattice
 Very close to the nominal lattice but provides larger DA and space for 

injection kickers
 Utilizes four octupoles per sector
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Injection cell with larger beta function

 Minimum changes: several different quads in one straight
 Horizontal beta function increased to 18m
 Need to tune sextupoles in two nearby cells
 Nonlinear optimization is ongoing
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76pm lattice with accumulation and reverse bends

 Reverse bends in Q4, Q5, Q7, and Q8
 Emittance reduced from 90 pm to 76 pm
 Dispersion increased to 100 mm
 Utilizes four octupoles per sector
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Conclusion

 A lattice design has been developed that is consistent with engineering constraints 
and satisfies goals

– Primary goal is ~100-fold increase in brightness for hard x-rays

 Lattice robust in the presence of errors
 Intrabeam scattering has moderate effect on brightness
 Simulations of harmonic bunch lengthening cavity indicate ability to increase rms 

bunch duration to 66 ps or more in 48-bunch mode
– Detailed simulations show this improves Touschek lifetime considerably

 Beam lifetime not as long as desired
– Study of loss patterns, collimation, and supplemental shielding to be undertaken

 Work on alternative lattices is ongoing
– The goal is to reduce emittance and provide accumulation

 Early version of H7BA lattice used file provided by ESRF.
 Most of the simulations used the Blues cluster at Argonne's Laboratory Computing 

Resources Center
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Backup slides follow
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Intrabeam Scattering

 Used ibsEmittance1 to model intrabeam scattering
– Assumed nominal rms bunch length of 50 ps (15 mm)
– Conservative, as shown below

 Uses Bjorken-Mtingwa formalism2 to compute the IBS growth rates
 Iterates to find self-consistent beam parameters

– Total growth rates equal
synchrotron radiation
damping rates in all
planes

– Fixed ratio of bunch 
length to energy
spread is assumed

– Fixed ratio κ of vertical
to horizontal emittance
is assumed

1: A. Xiao, L. Emery, M. Borland; A. Xiao, Linac08, 296-298.
2: J. D. Bjorken and S. K. Mtingwa, Part. Acc. 13 (1983) 115.
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Brightness Impact of IBS

 For 324 bunches, can enhance brightness ~2-fold with lower coupling
 With round beams, 48 and 324 bunches very similar

Curves are envelopes for set of 
3.7-m-long SCUs
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Single Bunch Current Limit1

 Achieving 200 mA in 48 bunches 
(4.2 mA/bunch) requires

– Careful iteration of vacuum 
system design

– Design of a lattice with sufficient
positive residual chromaticity

 Prediction is that 4.2 mA is possible
with chromaticity of +5

– Margin increased with latest
design (post CDR) 1: R. Lindberg et al., IPAC15, TUPJE077, TUPJE078.
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Longitudinal phase space impacted by impedance

200 mA in 48 bunches

200 mA in 324 bunches

 Intense bunches are disrupted by 
microwave instability

– No beam loss, but energy 
spread is inflated

 Threshold is at ~0.5 mA/bunch
– In APS, threshold is ~5 

mA/bunch
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Effect of HHC (13.5 kHz detuning)

 Rms bunch duration exceeds 75ps
 Microwave instability is 

considerably quieter
 324 bunch case has a somewhat 

split bunch

200 mA in 48 bunches

200 mA in 324 bunches

 For 48 bunches, lifetime improves 
~2-fold

– Less than nominal 4-fold because 
MWI already lengthened the 
bunch

 For 324 bunches, lifetime improves 
~3-fold
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