

APS-U Lattice Design Status Update

Vadim Sajaev

M. Borland, T. Berenc, L. Emery, R. Lindberg, Y. Sun, A. Xiao

LER 2015 workshop

15-17 September 2015

Lattice goals and constraints

- Hard constraints
 - ID and BM beamlines at same angle as now
 - Respect engineering limits on magnet strength
 - Respect space requirements from vacuum design, including diagnostics
 - Sufficient injection aperture for on-axis injection using swap-out mode and existing injector
- Goals
 - Emittance less than 70 pm
 - Preserve fill pattern that supports timing experiments
 - 4.8 m free space for insertion devices
 - Vertical beta functions at IDs close to ideal (for aperture) 2.4m in vertical
 - Horizontal beta functions at IDs not too large (<10m) to improve brightness
 - Small beta functions throughout to reduce effective transverse impedance
 - Lifetime >4.8 hours at 200 mA and 6 GeV, to nominally obviate the need for supplemental shielding

Hybrid 7BA Lattice Concept¹

- Phase advance of $\Delta \phi_x = 3\pi$ and $\Delta \phi_y = \pi$ between corresponding sextupoles chosen to cancel geometrical sextupole kicks
- Thick, interleaved sextupoles \rightarrow cancellation isn't perfect

1: L. Farvacque *et al.*, IPAC13, 79.

Optimization with Tracking-Based Multi-Objective Genetic Algorithm^{1,2}

- Tracking-based optimization allows directly optimizing lattice and sextupoles for
 - Large dynamic acceptance
 - Large Touschek lifetime (via local momentum acceptance)
 - Desired positive chromaticity
- Unlike theoretical approaches, can include
 - Effects of likely errors
 - Effects of radiation damping and longitudinal motion
 - Vacuum chamber apertures

Tracking-based MOGA optimization makes significant improvements starting from ESRF-II scheme.

1: See citations in M. Borland, IPAC12, 1035. 2: M. Borland, *et al.* J. Synch. Rad 21, 912-936 (2014).

Tracking-Based Optimization Details¹

- DA and LMA tracking performed with parallel elegant²
 - Track for 400 turns including rf and synchrotron radiation
 - More details of tracking methods described in CDR
 - One function evaluation takes ~1 hour on 32 cores using 400-turn tracking
 - Lifetime computed from LMA with touschekLifetime³
 - Assume a nominal (50 ps rms) bunch length and ignore IBS for now
- The algorithm is (typically) allowed to vary
 - Linear optics, using either
 - Direct variation of gradients
 - Variation of linear optics targets (e.g., emittance, tunes, beta functions)
 - 10 sextupole strengths (out of 12 present in two sectors)
- Goals are
 - DA to accommodate booster beam with on-axis injection
 - Expect $\sigma_x = 0.65 \text{ mm}$, $\sigma_y = 0.2 \text{ mm} \rightarrow \text{need } \pm 2 \text{ mm}$ by $\pm 0.6 \text{ mm}$
 - Lifetime of >4.8 hours in 48 and 324 bunch modes at 200 mA
 - Motivated by scaling of existing shielding design

1: See citations in M. Borland, IPAC12, 1035.

- 2: Y. Wang and M. Borland, AIP Conf. Proc. 877 (2006).
- 3: A. Xiao and M. Borland, PAC07, 3453.

"Best" MOGA Result

- DA comfortably exceeds ±2mm by ±0.6mm goal
- LMA consistent with lifetime of >10 hours in 324 bunch mode with 100% emittance ratio and 50-ps rms bunch duration
- MOGA optimizes configuration to handle specific error ensemble
 - Check with more ensembles
 - Also, must add multipole errors and ID kickmaps

Nonlinear Dynamics Evaluation Methodology

- Basic goal: evaluate with many error ensembles to ensure robustness
- Used 100 error ensembles with correction
 - Simulates the commissioning process
- DA/LMA tracking same as MOGA runs, but
 - 1000 turns instead of 400 (better convergence)
 - Element-by-element synchrotron radiation
- Add multipole errors, levels taken from various sources
 - Systematic or allowed multipoles from magnetic models
 - Random or unallowed multipoles from
 - Scaling of measured NSLS-II errors¹, or
 - Halbach theory for determining random multipole errors from mechanical errors².
- In some cases, include
 - Insertion devices
 - Alternatives for ID apertures
- After tracking completes
 - DAs analyzed to find percentile contours over all ensembles
 - LMAs used to compute Touschek lifetime for each ensemble

A. Jain, private communication.
 K. Halbach, NIM A 74, 147 (1969).

Sensitivity to Multipole Errors

- Case 0: no multipole errors
- Case 1: nominal multipole errors
- Case 4: double quad random errors

- Conclusion:
 - Multipole errors do not excessively impact DA or lifetime
 - Most errors could be increased with little negative impact
 - Good to maintain quad random errors at nominal levels

Beam Dynamics with HHC^{1,2,3}

- Assumed above that bunch duration is 50 ps
 - Zero-current natural length is ~12.5 ps
 - Lengthens to 20-35 ps with longitudinal impedance
 - Must use harmonic cavity to further lengthen bunch and improve lifetime
- Detailed studies performed using parallel elegant, including
 - Beam-loaded main rf system with feedback system
 - Passive bunch lengthening cavity
 - Longitudinal impedance
 - 48- and 324-bunch fill patterns
- Studies include
 - Variation of HHC loaded Q and detuning
 - Effect of filling from zero
 - Effect of bunch population variation
 - Effect of kicking out a bunch
 - Multibuch stability
- Time permits showing only a few highlights

M. Borland et al., IPAC15, MOPMA007.
 T. Berenc et al., IPAC15, MOPMA006.
 L. Emery et al., IPAC15, TUPJE065.

Scan of HHC detuning

- As expected, bunch lengthens as HHC cavity is tuned toward resonance
- "Beneficial" effect of MWI visible for 48-bunch mode
- As bunch lengthens with decreased detuning, MWI is suppressed and energy spread drops

Longitudinal density averaged over 2000 turns (48B)

• ____L

Touschek Lifetime Analysis

- Two dominant lifetime effects are Touschek and gas scattering
 - Of these, Touschek is typically the most important
- Above analysis of Touschek scattering made some assumptions
 - Notional bunch lengthening to 50-ps rms, gaussian shape
 - Emittance increase from IBS computed from this base
- Using results of tracking with HHC, can improve Touschek lifetime estimates
 - Uses new slice-based Touschek lifetime calculation¹ in **touschekLifetime**
 - Computations provide a Touschek lifetime value for each error ensemble, averaged over many bunch samples
 - Method not fully self-consistent, but allows combining effects of IBS, HHC, and microwave instability
 - Fully self-consistent studies planned in future

1: A. Xiao and M. Borland, IPAC15, MOPMA012.

Touschek Lifetime Distributions

- In both cases, have 200 mA, Q_L=600k, κ≈1
- For 48 bunches, get factor of 1.7 for 15.5 kHz detuning
 - Bunch is already significantly lengthened by the ring impedance
- For 324 bunches, get factor of 3.7 for 15.5 kHz detuning
- Some additional benefit from pushing to lower detuning
 - Have to watch for double-bunching, higher coupler power
 - Use 15.5 kHz for subsequent calculations

Commissioning Simulation¹

- Commissioning involves coming to grips with imperfections of the real machine
- Performed a realistic simulation of commissioning steps, including
 - Error generation (see table)
 - First-turn trajectory correction and first orbit correction
 - Orbit correction with reduced BPM displacement errors
 - Reflects expected improvement from beam-based alignment
 - Beta function correction based on response matrix fit
 - Coupling correction (minimizing cross-plane response matrix)
 - Emittance ratio adjustment to 10% at separated tunes
- Algorithm has ~98% success rate
 - Use results to determine robustness of nonlinear dynamics

Girder misalignment	$100 \ \mu \mathrm{m}$
Elements within girder	$30~\mu{ m m}$
Initial BPM offset errors	$500~\mu{ m m}$
Dipole fractional strength error	$1 \cdot 10^{-3}$
Quadrupole fractional strength error	$1 \cdot 10^{-3}$
Dipole tilt	$4 \cdot 10^{-4}$ rad
Quadrupole tilt	$4 \cdot 10^{-4}$ rad
Sextupole tilt	$4 \cdot 10^{-4}$ rad

These error levels appear readily achievable based on recent experience, e.g., NSLS-II.

1: V. Sajaev et al., IPAC15, MOPMA010

Swap-out Injection

- On-axis "swap-out" injection^{1,2,3} is an alternative to accumulation
 - Each injector shot replaces an existing stored bunch
 - DA must accommodate only the injected beam size
- Swap-out seems advantageous on balance
 - Pro: Smaller horizontal physical apertures possible in IDs
 - --- Emittance can be pushed to smaller values
 - Less disturbance to stored beam
 - Con: Single-bunch current limited by injector capability
 - Maximum number of bunches limited by fast kicker technology

- Injection efficiency is simulated directly
 - 100 static optical and multipole error ensembles, as above
 - Realistic beam distribution from booster, with optical errors
 - Injection trajectory errors and pulsed power supply jitter

1: E. Rowe *et al.*, Part. Accel. 4, 211 (1973). 2: R. Abela *et al.*, PAC91, 486 (1992). 3: L. Emery *et al.*, PAC03, 256 (2003).

Alternate lattice development

- Nominal lattice
 - emittance pushed to the lowest achievable value
 - dynamic acceptance not large enough for accumulation
 - on-axis swap-out injection is the only workable method
- Alternate lattice work follows two directions
 - Possibility for off-axis accumulation
 - Lower-emittance lattices

53pm swap-out injection lattice with reverse bends

- Reverse bends in Q4, Q5, and Q8
- Emittance reduced from 67 pm to **53** pm
- Dx from 70 mm to above 80 mm
- Nonlinear optimization is ongoing but initial results show improved performance compared to the 67pm lattice

90pm lattice with accumulation

- Emittance is 90pm compared to 67pm for the nominal lattice
- Very close to the nominal lattice but provides larger DA and space for injection kickers
- Utilizes four octupoles per sector

Injection cell with larger beta function

- Minimum changes: several different quads in one straight
- Horizontal beta function increased to 18m
- Need to tune sextupoles in two nearby cells
- Nonlinear optimization is ongoing

76pm lattice with accumulation and reverse bends

- Reverse bends in Q4, Q5, Q7, and Q8
- Emittance reduced from 90 pm to 76 pm
- Dispersion increased to 100 mm
- Utilizes four octupoles per sector

Conclusion

- A lattice design has been developed that is consistent with engineering constraints and satisfies goals
 - Primary goal is ~100-fold increase in brightness for hard x-rays
- Lattice robust in the presence of errors
- Intrabeam scattering has moderate effect on brightness
- Simulations of harmonic bunch lengthening cavity indicate ability to increase rms bunch duration to 66 ps or more in 48-bunch mode
 - Detailed simulations show this improves Touschek lifetime considerably
- Beam lifetime not as long as desired
 - Study of loss patterns, collimation, and supplemental shielding to be undertaken
- Work on alternative lattices is ongoing
 - The goal is to reduce emittance and provide accumulation
- Early version of H7BA lattice used file provided by ESRF.
- Most of the simulations used the Blues cluster at Argonne's Laboratory Computing Resources Center

Backup slides follow

Intrabeam Scattering

- Used ibsEmittance¹ to model intrabeam scattering
 - Assumed nominal rms bunch length of 50 ps (15 mm)
 - Conservative, as shown below
- Uses Bjorken-Mtingwa formalism² to compute the IBS growth rates
- Iterates to find self-consistent beam parameters
 - Total growth rates equal synchrotron radiation damping rates in all planes
 - Fixed ratio of bunch length to energy spread is assumed
 - Fixed ratio κ of vertical to horizontal emittance is assumed

1: A. Xiao, L. Emery, M. Borland; A. Xiao, Linac08, 296-298. 2: J. D. Bjorken and S. K. Mtingwa, Part. Acc. 13 (1983) 115.

Brightness Impact of IBS

- For 324 bunches, can enhance brightness ~2-fold with lower coupling
- With round beams, 48 and 324 bunches very similar

Single Bunch Current Limit¹

- Achieving 200 mA in 48 bunches (4.2 mA/bunch) requires
 - Careful iteration of vacuum system design
 - Design of a lattice with sufficient positive residual chromaticity
- Prediction is that 4.2 mA is possible with chromaticity of +5
 - Margin increased with latest design (post CDR)

1: R. Lindberg et al., IPAC15, TUPJE077, TUPJE078.

Resistive wall		Geometric contributions				
			Sector $(\times 40)$		Ring	
\mathbf{Metal}	$\mathbf{Diameter}$	\mathbf{Length}	Element	Number	Element	Number
Cu	22 mm	224 m	Regular BPM	12	Injection kicker	4
Al	22 mm	$605 \mathrm{~m}$	ID BPM	2	Extraction kicker	4
\mathbf{SS}	$22 \mathrm{~mm}$	$80 \mathrm{m}$	ID transition	1	Feedback	2
Al	$6 \mathrm{mm}$	$175~\mathrm{m}$	Bellow	14	$\mathbf{Stripline}$	1
Al	$140 \mathrm{~mm}$	$20 \mathrm{m}$	Flange	52	Aperture	2
			Crotch absorber	2	Fundamental cavity	12
			In-line absorber	12	Rf transition	4
			Gate valve	4	4^{th} harmonic cavity	1

Longitudinal phase space impacted by impedance

Low-Emittance Rings Workshop 2015

Effect of HHC (13.5 kHz detuning)

- For 48 bunches, lifetime improves ~2-fold
 - Less than nominal 4-fold because
 MWI already lengthened the bunch

 \mathfrak{G}

ŝ

 For 324 bunches, lifetime improves ~3-fold

- Rms bunch duration exceeds 75ps
- Microwave instability is considerably quieter
- 324 bunch case has a somewhat split bunch

