Towards sub-Micron Orbit Stability at NSLS-II

Boris Podobedov for NSLS-II Accelerator Team LER-2015, Grenoble, ESRF September 16, 2015

12 Years Ago Here

Possible Site Layout for NSLS-II

Boris Podobedov, LER 2015

Recent NSLS-II Storage Ring Performance

NATIONA

SYNCHROTRON LIGHT SOURCE II

Storage Ring

Operating Status

BROOKHA

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Insertion Devices: ~15 Installed and More on the Way

Installation of In-Vacuum Undulator

for ISR beamline, cell 4, this August

As of summer 2015: 7 IVUs 2 EPUs 3x2 DW

		SOTRON LI	HT SOURCE	.11		ID	یک (Fr	on	ten	d Mair	٦				
Be	amlir	ne Sh	utter	Ena	ble _	DISAB	LE	ENABLE		Enable	d Bea	mline	e Con	trol	Restrict	Permit
	F	E Stat	us - IC	Gap,	FE Flag	g, Shu	tters	and Va	lves		Interlocks	ID (Gap (m	ım)	Beamline	Control
	ID Gap	BMPS	GV1	Flag	Shutters	IDPS	FV	SSA	SSB	GV2&BL	Act IntlkBeamDump	Detail	ID 1	ID 2	Slits &	Gap
ID3 HXN	Open	Closed	Closed	Out	Disabled	Closed	Open	Closed	Closed	Closed	Enabled Normal	IVU20	40.00		Restricted	Permitted
ID5 SRX	Open	Closed	Closed	Out	Disabled	Open	Open	Open	Open	Closed	Enabled Normal	IVU21	40.00		Restricted	Permitted
ID08	Open	Closed	Closed	None	Disabled	Closed	Closed	Closed	Closed	Closed	Disabled <mark>Dumped</mark>	DW100	150.0	150.0)	
ID10 IXS	Closed	Closed	Closed	Out	Disabled	Closed	Open	Closed	Closed	Closed	Disabled <mark>Dumped</mark>	IVU22	5.50		Restricted	Permitted
ID11 CHX	Open	Closed	Closed	Out	Enabled	Closed	Open	Closed	Closed	Open	Disabled Normal	IVU20	40.00		Restricted	Permitted
ID16	Open	Closed	Closed	Out	Enabled	Closed	Open	Closed	Closed	Open	Disabled <mark>Dumped</mark>	IVU23	39.60		-	
ID17	Open	Closed	Closed	Out Out	Disabled	Closed	Closed	Closed	Closed	Closed	Disabled Normal	IVU21	39.90	40.00)	
ID18	Open	Open	Open	None	Disabled	Closed	Closed	Closed	Closed	Closed	Disabled Normal	DW100	150.0	150.0	0	
ID23 CSX	Open	Closed	Closed	Out	Disabled	Closed	Open	Closed	Closed	Open	Enabled Normal	EPU49	239.0	239.0	Restricted	Permitted
ID28 XPD	Open	Closed	Closed	Out	Enabled	Closed	Open	Closed	Closed	Open	Enabled Normal	DW100	150.0	150.0	Restricted	Permitted
BTS Shu	utter S	tatus	Clos	ed				IOC	status/r	eboot	ID&FE Limits	Fron	t-end Fla	igs	Temp Mon	itoring

Summary ID3 HXN ID5 SRX ID08 ID10 IXS ID11 CHX ID16 ID17 ID18 ID23 CSX ID28 XPD

											Open DW	's 🚥			
N/L		Gap (r	Gap (mm)				Elevation (mm)						PS Sum		
100	Setpoint	Readbac	k Min	Max		Setp	oint	Readback	Mir	n M	ах	Power	Mode		
C03	40.00	40.00	5.20	40.10		0.0	00	-0.00	-2.4	5 2.	45	On	Auto		
C05	40.00	40.00	6.40	40.10		0.0	00	-0.00	-2.7	5 2.	75	On	Auto		
C10	5.50	5.50	5.50	40.05		-3.	78	-3.78	0.0	o o.	00	On	Auto		
с11	40.00	40.00	5.20	40.10		0.0	00	-0.01	-2.4	5 2.	45	On	Auto		
C16	39.60	39.60	0.00	0.00		0.2	20	0.20	0.0	o o.	00	On	Auto		
C17-1	39.90	39.90	6.40	40.10		0.0	00	0.00	-2.0	0 2.	00	On	Auto		
C17-2	40.00	40.00	6.40	40.10		0.0	00	-0.00	-2.0	10 2.	00	On	Auto		
	Gap (mm)							PS Sum							
EPU	Setpoint	Readback	Min Ma	ax	M	ode	Setp	oint Rea	adback	Min	Max	Power	Mode		
C23-1	239.00	239.00	11.50 239	.00	Parall	el TO-BI	0.0	0 0	0.00	-24.60	24.60	On	Auto		
C23-2	239.00	239.00	12.00 239	.00	Parall	el TI-BO	0.0	0 -	0.00	-24.60	24.60	On	Auto		
	6	an DWI (m	m)			6.6		6				DWO F	26.6.000		
DW	Setpoint	Readback	Min Max	P	ower	Mode		Setpoint	Readback	Min	Max	Power	Mode		
C08	150.00	150.00	15.00 150.1		On	Auto		150.00	150.00	15.00	150.1	On	Auto		
C18	150.00	150.00	15.00 150.1		On	Auto		150.00	150.00	15.00	150.1	On	Auto		
C28	150.00	150.00	15.00 150.1		On	Auto		150.00	150.00	15.00	150.1	On	Auto		

Next Step: Top-off Operations

Results from Top-Off Injection Studies on July 28th U.S. DEPARTMENT OF ENERGY 5

Preparation for Top-Off operation continues at a good pace.

- 20% bunch-to-bunch variation has been achieved (ignoring the leading and trailing bunches)
- ✓ 0.5% variation in ring current has also been achieved.

The Top-Off Safety System fabrication and installation is continues on schedule.

Ray Fliller

High Stability Design Approach

- Most NSLS-II systems were designed and built with high stability in mind
- Stringent specs on most electrical and mechanical systems (PS regulation, vibration, thermal regulation, girder design, etc.)
- Many studies verifying the design, i.e. vibration analysis
- High resolution and stable BPMs designed and built
- Fast orbit feedback system (FOFB).

Frequency Mode In Range 2nd Frequency Mode In Range Type: Total Deformation Type: Total Deformation . . . Frequency: 63.335 Hz Frequency: 78.578 Hz Unit: m Linit: m 3/21/2007 12:36 AM 3/21/2007 12:32 AM 0.02403 Max 0.029511 Max 0.02136 0.026232 0.01869 0.022953 0.01602 0.019674 0.01335 0.016395 0.013116 0.01068 0.0080099 0.009836 0.0053399 0.006558 0.003279 0.00267 0 Min (b) (a) Natural modes of vibration for the girder-magnets assembly These efforts have largely payed off Boris Podobedov, LER 2015

Sushil Sharma

NSLS-II Storage Ring Design Parameters

Energy	3.0 GeV	RF Frequency	499.68 MHz
Circumference	792 m	Harmonic Number	1320
Number of Cells	30 DBA	RF voltage	4.8 MV
Number of Super-periods	15	RF Bucket Height	4.1%
Length ID Straights	6.6 & 9.3m	RMS Bunch Length	11.5ps
Emittance with DW (h/v)	0.9 nm/ 8 pm	Average Current	500 mA
Momentum Compaction	.00037	Current per Bunch	~0.5 mA
Dipole Bend Radius	25m	Touschek Lifetime	>3hrs
Energy Loss per Turn (with DW)	0.675MeV	Top-Off Injection Freq	1/min
Energy Spread (with DW)	0.094%	Charge from one injection	7.3nC
		Stability requirement	<10% beam size

RMS Beam Sizes and Orbit Stability Specs

- Calculated beam sizes for $\varepsilon_x = 0.9$ nm, $\varepsilon_y = 8$ pm, $\delta E/E = 0.09\%$
- Smallest beam size in the center of low- β straight σ_x =41 μ m, σ_y = 3.1 μ m
- Our goal to have orbit stable to 10% of these values, i.e. <0.3 μ m rms
- Most stringent angular stability is at the high- β straight, 0.1 σ_v '=0.15 μ rad

NSLS-II BPMs

Data Type	Mode	Max Length
ADC Data	On-demand	256Mbytes or 32M samples per channel simultaneously
Single-Pass	Streaming	800hr circular buffer (1Hz Injection)
TbT	On-demand	256Mbytes or 5 M samples Va,Vb,Vc,Vd, X,Y,SUM, Q, pt_va,pt_vb,pt_vc,pt_vd
FOFB 10KHz	Streaming via SDI Link & on demand	Streaming - X,Y,SUM; For on demand: 256 Mbytes or 5 Msamples. Va,Vb,Vc,Vd, X,Y, SUM, Q, pt_va,pt_vb,pt_vc,pt_vd
Slow Acquisition 10Hz	Streaming and On-demand	80hr circular buffer Va,Vb,Vc,Vd, X,Y,SUM, Q, pt_va,pt_vb,pt_vc,pt_vd
System Health	Streaming & on- demand	80hr circular buffer AFE temp, DFE temp, FPGA Die temp, PLL lock status, SDI Link status

J. Mead, W. Cheng

- Original NSLS-II development (by Kurt Vetter et al.)
- Resolution specs of 1 µm turn-byturn (TbT) and 200 nm in 10 kHz (FA) mode were verified with beam
- FA is used for fast orbit feedback

What We Understand about Orbit Noise

Horizontal Orbit Stability without Feedback

• July 2014, 1 sec of 10 kHz (FA) data

Horizontal orbit stability is a lot better than the 10% beam size spec.

Horizontal Orbit Stability without Feedback

Same data, x10 finer vertical scale

- Hor. orbit stability is at the level of ~1% beam size.
- Except for dispersion BPMs most of the noise is below 100 Hz.

Vertical Orbit Stability without Feedback

- Full BW vertical orbit stability is at the level of 20% of beam size.
- Need only a feedback gain of ~2 in 0-100 Hz BW to get to the spec.
- => a fairly simple feedback digital filter design should work.
- Integrated PSD approx. correlates with $(\beta_v(s))^{1/2}$.

Identification of Orbit Noise Sources

Short-Term Orbit Stability: Horizontal

- All 180 BPMs sampled for 10 sec at 10 kHz; orbit feedbacks off
- Plot ring-average BPM spectra (psd and integrated)

Plenty of spectral features; but integrated levels are very small

Short-term Orbit Stability: Vertical

Same plot for the vertical

Plenty of spectral features; but integrated level is very small

Booster Ramp Harmonics

- Booster magnet ramps (mainly BD1) induce 1 Hz orbit noise + harmonics
- Turning them all off (black curve) eliminates this noise completely
- This noise is reproducible, easily fixable by a simple feedforward system
- Or can be taken out by the FOFB.

Correlations with Vacuum Chamber and Girder Vibrations

Weixing

Cheng

- All levels are pretty small
- Electronic noise << 4.6 mA beam except for the ~450 Hz peak (fixed now)
- Some correlation of mechanical motions and beam motion
- Some agreement to earlier mech. modelling and vibration measurements

RF Noise

- Dispersive BPM noise is dominated by RF, but it is still small!
- Recent adjustment of the switching frequency of the RF HVPS to have synchrotron peak in a to "quieter region" i.e. between the switching frequency sub-harmonics (112 kHz/86 modules)
- Strongest switching frequency lines are down by a factor of ~6

RF Noise Cont'd

- The noise is a very small percentage of beam size
- The noise does not directly affect the (ID) users
- It cannot be cured by FOFB (frequency too high !)
- May need to revisit once IR beamlines come online

The Source of 60 Hz

Noise Locator Tool for NSLS-II

- Uses Matlab Middle Layer by Greg Portmann
- Input is any sampled orbit data file, usually FA (10 kHz), or SA (10 Hz)
- The tool does display and analysis only (no machine control)
- Self-explanatory GUI interface

Found with the Noise Locator Tool

• Most of the 60 Hz noise coming from one single location, s~580 m

lov, LER 2015

Pinger Magnets in the Ring

• Pinger magnets are located at s=577.17 m (h) and 577.54 m (v)

Pinger Magnets in the Ring

- A likely source of 60 Hz is one of the transformers close to the beam pipe
- Transformers are on even when high voltage is off (and no beam pinging)

Turning Pinger AC Contactors OFF...

- ... kills the 60 Hz and its harmonics
- This is the simplest cure as we don't use pingers during ops anyway
- However, users don't seem to notice this noise so far (so we often ran with pinger AC contactors on)

Back to Overall Orbit Stabitliy

Short-term Orbit Stability: ID BPMs

3/26, Ops with SOFB, Vertical ID BPM; Cell 5 center

Less than 20% of the design beam size

Medium-term Orbit Stability: First Look at Buffered SA Data

- 10,000 points (= 16.7 mins) of 1 Hz orbit data from 180 RF BPMs
- Slow Orbit Feedback ON
- Not much spectral structure; just booster harmonics and "RF cryo?"

Medium-term Orbit Stability: First Look at Buffered SA Data Cont'd

- Integrated PSDs for the same data
- Levels are pretty low

Fast Orbit Feedback

Fast Orbit Feedback Diagram

Fast Orbit Feedback

Om Singh et al. IBIC 2013

- 180 BPMs in each plane
- 90 fast correctors / plane with an option to offload accumulated kick effort to (strong) slow correctors
- Standard SVD algorithm
- Individual PID coefficients for each eigenvector

Fast Corrector

Fast Orbit Feedback

Stability with Fast Orbit Feedback

Weixing Cheng

Boris Podobedov, LER 2015

Stability with Fast Orbit Feedback Cont'd

Weixing Cheng

Boris Podobedov, LER 2015

Long Term Stability with FOFB

- 4 non-dispersive vertical BPMs shown during "75 mA Ops" with FOFB
- Long term drift is less than 1 μm
- Long term drift in the horizontal (not shown) is less than 5 μ m
- Further improvement is expected with top-off and FOFB optimization

Conclusions and Future Plans

- Even without orbit feedbacks NSLS-II orbit stability is quite good, thanks to the meticulous design efforts.
- Short term stability is brought within 10% of beam-size (sub-µm in the vertical) by using a fast orbit feedback system.
- Major noise sources have been identified and understood, especially the short-time scale ones.
- Longer term stability was less studied due to lack of time and rapid machine development. Typical orbit drifts in 8 hr period at the ID source points are sub-µm in the vert., single digit microns in hor.
- Further improvement is expected from top-off operations to start soon.
- Other developments will include commissioning X-ray BPMs, further optimization of orbit feedbacks, and joint studies with the users.

