The lows and highs of (n)PDFs

Rhorry Gauld

Exotica and EW session LHCb Implications Workshop 2015

Science & Technology Facilities Council

General Introduction and Motivation

Proton-Proton

- low-x (D production)
- high-x (top production, W+jets)

Proton-Lead (if time permits)

constraining Cold Nuclear Matter effects

<u>Outlook</u>

• PDF `wish-list'

D ON ON ONB ELIE VEATH INGHAI SCHSAYS

www.eyechartmaker.com

The Problem

Image from Juan Rojo

The Approach

Drawing by Keith Hamilton

The Approach

Hadronisation (PS)

Drawing by Keith Hamilton

The Approach

Drawing by Keith Hamilton

Constrain PDFs by measuring many process dependent cross sections

Modern PDFs and recommendations

ABM12	arXiv:1310.3059	Global analysis
CT14	arXiv:1506.07443	Global analysis
CJ12	arXiv:1212.1702	High-x
HERA2.0	arXiv:1506.06042	HERA only
JR14	arXiv:1403.1852	Global analysis
MMHT14	arXiv:1412.3989	Global analysis
NNPDF3.0	arXiv:1410.8849	Global analysis (MC errors)

Modern PDFs and recommendations

LHCb Kinematics

 $\rightarrow C\overline{C}$

 $\log_{10}(x_2)$

Low-x

-2

-3

-4

-5

-6

-6

$$x_{1,(2)} = \frac{m_T}{\sqrt{\hat{s}}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

- x_i : fraction of momentum
- y_j : rapidity
- $\sqrt{\hat{s}}$: partonic COM

 m_T : transverse mass

 $m_c \simeq 1.5 \,\,\mathrm{GeV}$

Moderate-x

-1

 $\log_{10}(x_{1})$

0

-2

pp→c̄c, √s = 7 TeV

-3

 $p_{T}(D^{0}) < 8.0 \text{ GeV}$

 $2.0 < y(D^0) < 4.5$

<x₁> = 1.8e-02

<x₂> = 4.6e-05

-5

-4

LHCb acceptance, $2.0 < y(D^0) < 4.5$

 $\rightarrow c\bar{c}$

 $\log_{10}(x_2)$

Low-x

-2

-3

-4

-5

-6

-6

$$x_{1,(2)} = \frac{m_T}{\sqrt{\hat{s}}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

- x_i : fraction of momentum
- y_j : rapidity
- $\sqrt{\hat{s}}$: partonic COM
- m_T : transverse mass

 $m_c \simeq 1.5 \,\,\mathrm{GeV}$

-1

 $\log_{10}(x_{1})$

0

-2

-3

pp→c̄c, √s = 7 TeV

 $p_{T}(D^{0}) < 8.0 \text{ GeV}$

 $4.0 < y(D^0) < 4.5$

<x₁> = 5.1e-02

<x₂> = 1.5e-05

-5

-4

`Forward' LHCb acceptance, $4.0 < y(D^0) < 4.5$

`Forward' LHCb acceptance, $2.5 < \eta(t) < 4.5$

Summary of introduction

LHCb simultaneously sensitive to **low-** and **high-x**

Large-x constraints:

- q/g distributions important for NP searches
- interplay with nuclear physics

Low-x constraints:

- study DGLAP/saturation at low-x
- input for atmospheric neutrino flux

Proton-Proton

D production in pp

7 TeV measurement - arXiv: 1302.2864

$$pp \rightarrow D + X$$

 $2.0 < y_D < 4.5$
 $Dp_T < 8.0 GeV$

D production in pp

PDF Uncertainties smallest

Scale Uncertainties smallest

D production in pp

Normalising 7 TeV data

Results of including data

RG, J. Rojo, L. Rottoli, J. Talbert - arXiv:1506.08025

- 1) Normalise LHCb differential charm data to high-pt, low-y bin
- 2) Reweight the 100 replicas based on compatibility with LHCb data (here we use the FONLL predictions obtained from public web interface)

Comparison of HERA+LHCb data

PROSA Collaboration analysis - arXiv:1503.04581

FONLL: Cacciari, Mangano, Nason - arXiv:1507.06197

Using the PDF with LHCb data for astrophysics

In progress RG, J. Rojo, L. Rottoli, S. Sarkar, J. Talbert - arXiv:1511.XXX

prompt neutrino flux background to extraterrestrial neutrinos

Top measurements proposed - Kagan, Kamenik, Perez, Stone arXiv:1103.3747 PDF Constraints and SM asymmetry predictions - RG arXiv: 1311.1810, 1409.8631 Observation of forward top quark production - LHCb arXiv: 1506.00903

Approach same as D - reconstruct `one' of the heavy quarks

Top at LHCb: Potential at 14 TeV

POWHEG+Pythia8 (NLO+PS), Signal+Background stacked b-tagging : 1% mis-tag, 70% efficiency muon: 75% efficiency

High statistical precision expected within 1-2 year of data taking

Top at LHCb: Potential at 14 TeV

Consider impact of a fiducial cross section measurement on gluon PDF

Only parton-level. So actual measurement more constraining...

Actual fit would need to be performed at lepton+jets level

Electroweak+jets

 $2.0 < \eta(l, j) < 4.5$ $p_T(l/j) > 20/80 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

- PDF uncertainty
- Scale Uncertainty
- Fixed-Order
- LHCb `stat uncertainty'

Different stat./sys. assumptions

$$\frac{\delta f_d^{\rm Now}(x=0.7,m_W^2)}{\delta f_d^{50ib}(x=0.7,m_W^2)} \simeq 3$$

x 27

Sensitivity to high-x nuclear corrections Approach of CT-JLAB (1212.1702), fit proton + deutron DIS neutron DIS: more data at high-x + higher-twist corrections

Modelling the binding in Deuteron Min : WJC1 - see arXiv:0802.1552 [nucl-th] Max : CD-Bonn - see arXiv:0006014 [nucl-th] (extracted from N-N scattering < 350 MeV)

p-Pb collisions

p-Pb collisions

Is the distribution of partons the same in bound and free nuclei?

$$f_i^A(x,\mu_F^2) = \frac{R_i^A(x,\mu_F^2)}{R_i^A(x,\mu_F^2)} \otimes f_i^{\text{free}}(x,\mu_F^2)$$

Nuclear modification of PDFs, extracted from data! e.g.:

nCTEQ15 - arXiv 1509.00792 EPS09 - arXiv 0902.4154 DSSZ - arXiv 1112.6324 HKN07 - arXiv 0709.3038

p-Pb collisions

Is the distribution of partons the same in bound and free nuclei?

$$f_i^A(x,\mu_F^2) = \frac{R_i^A(x,\mu_F^2)}{R_i^A(x,\mu_F^2)} \otimes f_i^{\text{free}}(x,\mu_F^2)$$

Nuclear modification of PDFs, extracted from data! e.g.:

nCTEQ15 - arXiv 1509.00792 EPS09 - arXiv 0902.4154 DSSZ - arXiv 1112.6324 HKN07 - arXiv 0709.3038

D-hadron predictions for LHCb

$$\sigma_{pA \to Q\bar{Q}} = A \sum_{i,j} \int dx_{i,j} f_{i/p}(x_i, \mu_F^2) R_{j/A}^{\text{nuc}} \otimes f_{j/N}(x_j, \mu_F^2)$$
$$d\hat{\sigma}_{ij \to Q\bar{Q}X} \left(\hat{s}, \mu_F^2, \mu_R^2, \alpha_s(\mu_R^2), m_Q\right) + \dots$$

Double differential within LHCb acceptance - RG arXiv: 1508.07629

Importance of constraining CNM effects

Importance of constraining CNM effects

Outlook

PDF wishlist

process	measurement type	x_1 x_2		sensitivity
pp collisions				
W^{\pm} -jets	Lepton asymmetry / cross-section	large	moderate	u/d
$W^{\pm}c$ -jets	Lepton asymmetry / cross-section	large	moderate	s/\overline{s}
$t \overline{t}$	cross-section	large	moderate	g
t/\overline{t}	Asymmetry	large	moderate	u/d
dijets	cross-section	large	moderate	g
$Qar{Q}$	cross-section (large m_{QQ})	large	moderate	g
D/B	Ratio $(13/7)$ / cross-section	moderate	low	g
Drell-Yan (low m_{ll})	cross-section	moderate	low	$q/ar{q}$
p Pb collisions				
D/B	R_{FB} / cross-section	moderate	low	R_g^{Pb}
Drell-Yan (low m_{ll})	R_{FB} /cross-section	moderate	low	$R^{Pb}_{q/ar{q}}$

Have not considered Onia+CEP production... someone better qualified should comment on this.

Thanks for your attention!

Bonus slides

Fitting era of the LHC

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}^{(6)}; \qquad \mathcal{L}^{(6)} = \sum C_i Q_i$

Ŀ	
Mpl	
	?
	· $\Lambda_{ m NP}$
	?
	← LHC
EW	t W, Z, h
	c,b $ au$
$\Lambda_{ m QCD}$	u,d,s e,μ
•	u

	$1: X^3$		$2: H^{6}$		$3: H^4 D^2$		5 :	$5:\psi^2 H^3 + \text{h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$_{D} \left(H^{\dagger} D_{\mu} H \right)^{*} \left(H^{\dagger} D_{\mu} H \right)$		Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$		
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$									
$4: X^2 H^2$			$6: \psi^2 XH + h.c.$		$7:\psi^2H^2D$					
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu})$	$e_r)\tau^I H$	$W^{I}_{\mu\nu}$	$Q_{Hl}^{(1)}$		$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$		
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^\mu$	$\nu e_r)HB$	$B_{\mu u}$	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}{}_{\mu}{}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$		Q_{He}		$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{e}_p\gamma^\mu e_r)$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu})$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$		$Q_{Hq}^{(1)}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^\mu)$	$(\nu u_r)\widetilde{H}$	$B_{\mu u}$	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$\Gamma^A d_r) H$	$G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu})$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$		Q_{Hd}		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H \widetilde{W} B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^\mu$	$^{\nu}d_r)H$	$B_{\mu u}$	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	
$8:(ar{L}L)(ar{L}L)$			8:($8:(\bar{R}R)(\bar{R}R)$		$8:(ar{L}L)(ar{R}R)$				
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(\bar{e}_j)	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$		Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(\bar{u}_{p})	$(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$		Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	(\bar{d}_{p})	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$		Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	(\bar{e}_{I})	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$		Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	(\bar{e}_{j})	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$		$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	(\bar{u}_{l})	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$		$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$		$u_s \gamma^\mu T^A u_t)$	
	$Q_{ud}^{(8)} (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \qquad Q_{qd}^{(1)}$		$Q_{qd}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)$						
$Q^{(8)}_{qd} = (ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$							$\bar{l}_s \gamma^\mu T^A d_t)$			
$8: (\bar{L}R)(\bar{R}L) + h.c.$ $8: (\bar{L}R)(\bar{L}R) + h.c.$										
$Q_{ledq} (\bar{l}_{j}^{i}e_{r})(\bar{d}_{s}q_{tj})$			$\zeta_{tj})$	$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) \epsilon_{jk} (ar{q}_s^k d_t)$					
	$Q^{(8)}_{auad} (\bar{q}^j_p T^A u_r) \epsilon_{jk} (\bar{q}^k_s T^A d_t)$									
			G	$Q_{lequ}^{(1)}$	$(ar{l}^{jj}_p e_r) \epsilon_{jk} (ar{q}^k_s u_t)$					
			G	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_j$	$a_k (\bar{q}_s^k \sigma^{\mu\nu} u_t$)			

Fitting era of the LHC

Taking a bottom-up approach...

Motivation: interpret Higgs couplings measurements in a robust framework see - Progress in Higgs Effective Field Theories (Higgs Couplings 2015), M. Trott

Take for example,

$$h \to b\overline{b}$$

at one-loop in the SMEFT Receives $\mathcal{O}(m_t^3)$ corrections from

$$Q_{qtqb}^{(1,8)} = (\bar{q}^{j}T^{1,A}t)\epsilon_{jk}(\bar{q}^{k}T^{1,A}b)$$

LHCb already `measured' the differential b-quark pair cross-section

$$\frac{dA_{FB}}{dM_{b\bar{b}}} = \frac{d\sigma^{asym.}/dM_{b\bar{b}}}{d\sigma^{sym.}/dM_{b\bar{b}}}$$

LHCb data arXiv:1406.4789

$D^{\circ} \rightarrow K^{-}\pi^{+}$ **13 TeV D data from LHCb**

See talk from M. Needham - Heavy Flavour parallel QCD@LHC 2015

1) POWHEG+NNPDF3.0 reweighted with LHCb 7 TeV data (NLO+LLcoll.) 1506.08025

- 2) FONLL+NNPDF3.0 (without reweighting), Cacciarai, Mangano, Nason 1507.06197
- 3) GMVFNS Kniehl et al. EPJC 72 (2012) 2082

LHCb kinematics: Pb-p

p-Pb probe shadowing (low-x)

Pb-p probe anti-shadowing (x~0.05)

Rfb simultaneously sensitive to these effects

Increasing D pT gains sensitivity to anti-shadowing regime!

