Uncovering mass generation through Higgs flavor violation $h \rightarrow \tau \mu, B_s \rightarrow \tau \mu,...$

Alex Kagan

University of Cincinnati

based on Wolfgang Altmannshofer, Stefania Gori, AK, Luca Silvestrini, Jure Zupan 1507.07927

<u>Plan</u>

- Introduction
 - $h \rightarrow \tau \mu$ motivates an additional source of electroweak symmetry breaking
- The lepton and quark "1-3" mass matrix paradigm with two sources of EWSB also see Perez et al. 1503.00290; Ghosh, Gupta, Perez 1508.01501

$$\mathcal{M}^{\ell,q} = \mathcal{M}_0 \; (\text{rank 1}) + \Delta \mathcal{M} \; (\text{rank 2 or 3})$$

- a second fundamental Higgs doublet
- a second composite Higgs
- pheno implications

Introduction

The CMS "anomaly" (2.4 σ) CMS-HIG-14-005 : assuming SM Higgs production

$$Br(h \to \tau \mu) = (0.84^{+0.39}_{-0.37}) \%$$

ATLAS (hadronic au decay) 1508.03372 :

$$Br(h \to \tau \mu) = (0.77 \pm 0.62) \%$$

Yukawa couplings

Defining the Yukawa couplings

 $Y_{\tau\mu}h\,\bar{\tau}_L\mu_R + Y_{\mu\tau}h\,\bar{\mu}_L\tau_R$

and assuming $\Gamma_h = \Gamma_h^{\rm SM} + \Gamma(h \to \tau \mu)$

$$\Rightarrow \sqrt{|Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2} \approx (2.6 \pm 0.6) \cdot 10^{-3}$$

All fermion masses from a single Higgs?

EFT approach: integrating out the new physics at scale Λ

$$-\mathcal{L}_{\text{Yuk.}} = \lambda_{ij}(\bar{\ell}_L^i \ell_R^j)H + \frac{\lambda'_{ij}}{\Lambda^2}(\bar{\ell}_L^i \ell_R^j)H(H^{\dagger}H) + \dots \Rightarrow Y_{\tau\mu} = \frac{v^2}{\sqrt{2}\Lambda^2} \langle \tau_L | \lambda' | \mu_R \rangle$$

• the "blobs" must contain charged fields \Rightarrow EM dipole operators

$$L_{\text{eff}} = c_{L,R} \, m_{\tau} \frac{e}{8\pi^2} \left(\bar{\mu} \sigma^{\mu\nu} \tau_{L,R} \right) F_{\mu\nu}, \quad c_{L,R} \sim \frac{Y_{\tau\mu,\,\mu\tau}}{m_{\tau} v}$$

contributions to lepton Yukawa couplings (a), electromagnetic dipole (b)

Realization of EFT with exchange of vectorlike leptons

$$Br(\tau \to \mu \gamma) < 4.4 \times 10^{-8} \ (90\% \text{ CL}) \Rightarrow \sqrt{|c_L|^2 + c_R|^2} < \frac{1}{(3.8 \text{TeV})^2}$$

 $\Rightarrow Y_{\tau\mu,\mu\tau} \lesssim 3 \cdot 10^{-5}$

• $\tau \to \mu \gamma$ generically excludes the CMS central value $Y_{\tau\mu} \sim 3 \times 10^{-3}$ by O(100)

•
$$O(100)$$
 reduction in $Br(h \to \tau \mu)$ still exceeds $Y_{\tau \mu}$ bound by $O(10)$

CMS central value $\Rightarrow \tau \rightarrow \mu \gamma$ diagrams must be canceled at the % level

Additional source of EWSB, or 3rd generation is special

$$\mathcal{M}^{\ell} = \mathcal{M}_0^{\ell} + \Delta \mathcal{M}^{\ell}$$

- \blacksquare M_0 due to scalar ϕ : primary Higgs component, accounts for bulk of $m_{ au}$

 $h = \cos \alpha \, \phi - \sin \alpha \, \phi'$

- Choose flavor basis in which
 - one non-zero entry for \mathcal{M}_0^ℓ : $(\mathcal{M}_0^\ell)_{33} \sim m_{ au}$
 - generically for 2nd, 3rd generations: $(\Delta \mathcal{M}^{\ell})_{ij} = \mathcal{O}(m_{\mu}), \ i, j = 2, 3$
 - adding 1st generation: $(\Delta \mathcal{M}^{\ell})_{i1, 1i} = \mathcal{O}(m_e), \ i = 1, 2, 3$

Flavor violating Yukawa couplings

$$Y_{\mu\tau} = -R_Y \, \frac{(\Delta \mathcal{M}^\ell)_{\mu\tau}}{v_W},$$

where
$$(\Delta \mathcal{M}^{\ell})_{\mu\tau} \equiv \langle \mu_L | \Delta \mathcal{M}^{\ell} | \tau_R \rangle$$

- \blacksquare R_Y only depends on details of EWSB sector: e.g., in 2HDMs: α , $\langle \phi' \rangle / \langle \phi \rangle$
- for $R_Y \sim 1$ and $Y_{\mu\tau} \sim Y_{\tau\mu}$, the CMS hint $\Rightarrow (\Delta \mathcal{M}^{\ell})_{\mu\tau} \sim (0.45 \pm 0.10)$ GeV, consistent with $(\Delta \mathcal{M}^{\ell}) = \mathcal{O}(m_{\mu})$

• $\tau \rightarrow \mu \mu \mu$ well below the bound
• $\mu \rightarrow eee$ well below the bound,
• for $(\Delta \mathcal{M}^{\ell})_{i1, 1i} = \mathcal{O}(m_e)$

$\tau \to \mu \gamma$ suppression and the scale of New Physics

If ΔM^{ℓ} originates from NP at scale Λ , the dipole operator coefficients due to NP in the loops scale as

$$c_{L,R} \sim Y_{\tau\mu,\mu\tau} \, \frac{8\pi^2}{m_\tau v_W} \, \frac{v_W^2}{\Lambda^2}$$

- extra v_W^2/Λ^2 suppression compared to one source of EWSB
- consistency of CMS "hint" with $Br(\tau \to \mu \gamma)$ achieved for $\Lambda \ge O(10)$ TeV

Consistency of CMS "hint" with $Br(\mu \to e\gamma)$ from the "NP blobs", for $(\Delta \mathcal{M}^{\ell})_{i1, 1i} = \mathcal{O}(m_e)$, would require $\Lambda \ge O(\text{few}) \times 10$ TeV

Extending to the quark sector

minimal choice: new source of EWSB same for quarks and leptons \Rightarrow same R_Y

 $\mathcal{M}^q = \mathcal{M}^q_0 + \Delta \mathcal{M}^q$

generically

$$(\Delta \mathcal{M}^{u,d})_{ij} = \mathcal{O}(m_{c,s}), \ i,j=2,3$$

9 generation of m_c , m_s , V_{cb} requires

$$(\Delta \mathcal{M}^{u,d})_{22} \approx m_{c,s}, \quad (\Delta \mathcal{M}^d)_{23} \approx V_{cb} m_b$$

bound on $B_s - \bar{B}_s$ mixing operator $(\bar{b}_R s_L)(\bar{b}_L s_R)$ from Higgs exchange

$$\Rightarrow \quad \Delta \mathcal{M}_{32}^d \lesssim \frac{V_{cb} \, m_b}{6}$$

scaling for $b \to s\gamma$ is analogous to $\tau \to \mu\gamma$. Bound on NP scale Λ^q ,

$$Br(b \to s\gamma) \Rightarrow \Lambda^q \gtrsim 5 \ TeV$$

combining $h \to \tau \mu$ and $V_{cb} \Rightarrow$ potentially observable $B_s \to \tau \mu$, $B \to K^{(*)} \tau \mu$ via exchange of Higgs,..... - come back to this

For $(\Delta \mathcal{M}^{u,d})_{1i,i1} = \mathcal{O}(m_{u,d})$, θ_c and V_{ub} generated in the down sector, via $\Delta M_{12}^d \approx \theta_c m_s$,...

b \Rightarrow bound on ϵ_K operator $(\bar{s}_R d_L)(\bar{s}_L d_R)$, from Higgs exchange

$$(\Delta \mathcal{M}^d)_{31} \lesssim \frac{(\Delta \mathcal{M}^d)_{13}}{10}, \quad (\Delta \mathcal{M}^d)_{32} \lesssim \frac{(\Delta \mathcal{M}^d)_{23}}{10}$$

- entertaining possibility of larger entries in $(\Delta \mathcal{M}^u)$, could generate large contributions to θ_c , V_{cb} , V_{ub} in the up sector, accompanied by large flavor violation in the up sector from Higgs exchange, eg.
 - CPV in $D \overline{D}$ mixing near current bound
 - potentially observable $t \rightarrow ch$ decay!
 - for example,

$$\Delta M_{23,32} \approx V_{cb} m_t \Rightarrow \operatorname{Br}(t \to ch) \approx 5 \times 10^{-4}$$

compare with current ATLAS sensitivity: $Br(t \rightarrow ch) = 0.22 \pm 0.14\%$

Example 1: 2HDMs

- Consider two Higgs doublets Φ and Φ'
- neutral components ϕ and ϕ' with vev's v and v': $\tan \beta = v/v'$
- Higgs mass eigenstates

$$h = \cos \alpha \sqrt{2} \operatorname{Re} \phi - \sin \alpha \sqrt{2} \operatorname{Re} \phi', \quad H = \sin \alpha \sqrt{2} \operatorname{Re} \phi + \cos \alpha \sqrt{2} \operatorname{Re} \phi'$$

Higgs off-diagonal couplings:

$$y_{\mu\tau}^{h} = -\frac{\langle \mu_L | \delta M | \tau_R \rangle}{v_W} R_Y, \qquad R_Y = 2 \frac{\cos(\alpha - \beta)}{\sin 2\beta}$$

Higgs diagonal couplings:

$$\hat{y}_a \equiv Y_{aa}/Y_{aa}^{SM}$$
: $\hat{y}_a = \cos\alpha/\sin\beta - R_Y(\Delta \mathcal{M}^\ell)_{aa}/m_a, \ a = \mu, \tau, \dots$

 $\tau \to \mu \gamma$ constraint:

If ϕ' couplings are tree-level, then $\tau \to \mu \gamma$ is suppressed - no new physics "blob" with a large "internal" chirality flip

Two flavor examples for the leptons

considered two illustrative flavor structures for $\Delta \mathcal{M}^{\ell}$

- "horizontal": only off-diagonal entries $m'_{23}, m'_{32} \neq 0$
- "generic": all $(\Delta \mathcal{M}^{\ell})_{ij} \neq 0$, with $|(\Delta \mathcal{M}^{\ell})|_{ij} < 5m_{\mu}$
- In both cases, CMS result requires $R_Y = O(1)$
 - obtained for reasonable (perturbative) values of scalar quartic couplings

Diagonal Yukawas

- scanning over mass matrix entries and imposing
 - m_μ, m_τ
 - heavy Higgs xsec bounds $1/5 < |m'_{32}/m'_{23}| < 5$

 $\lambda_{3,4} \leq 2, \ m_A \geq 400 \,\mathrm{GeV}$

$$(\Delta \mathcal{M}^{\ell})_{ij}| < 5m_{\mu} |\delta g_{hVV}/g_{hVV}^{SM}| \leq 20\%$$

- deviations larger in generic case
- ratios $|\hat{y}_{\mu}| < 1$ and $|\hat{y}_{\mu}/\hat{y}_{\tau}| < 1$ favored

Quarks in 2HDM

the scatter plots are for scenario with V_{cb} generated in down sector, i.e.

 $(\Delta \mathcal{M}^{u,d})_{ij} = \mathcal{O}(m_{c,s}), \ i,j=2,3$

- new contributions to $B_s \rightarrow \mu\mu$: A-exchange is the largest tan β enhanced
- $Br(B_s \rightarrow \mu\mu)$ constraint imposed in the scatter plots
- I $\approx 80\%$ of the points do not require tuned cancelations of m_{μ} and $B_s \rightarrow \mu \mu$

diagonal quark couplings

- \hat{y}_c , \hat{y}_s typically O(1) suppressed could even vanish in tuned regions of parameter space also see G. Perez et al. '2015
- \hat{y}_t , \hat{y}_b receive $\leq 20\%$ corrections

Example 2: Technicolor with scalars

- $\Delta \mathcal{M}^{\ell}$ is due to technicolor (TC) strong dynamics
- Higgs is a mixture of elementary ϕ and composite heavy scalar $\sigma_{\rm TC}$, with $R_Y\gtrsim 1$
- as in 2HDM, in addition to heavy Higgs $H \sim \sigma_{TC}$, have psedoscalar, A, and charged Higgs which are partially composite.
- **F** TC condensates $\langle \bar{D}D \rangle$, $\langle \bar{U}U \rangle$ induce Higgs VEV $\langle \phi \rangle$ through a "tadpole", and induce a rank-1 $\Delta M^{\ell,q}$ via exchange of a heavy technicolored scalar

 $au o \mu\gamma$ bound requires $m_\xi\gtrsim 10$ TeV, as in earlier naive dimensional analysis

straightforward to obtain viable benchmarks for 2nd+3rd generation leptons, quarks with O(1) techniscalar Yukawa couplings, $h_i^e, h_i^\ell = O(1),...$ which respect $\tau \to \mu \gamma$, $b \to s \gamma$ bounds and reproduce the CMS central value

Iarge deviations from SM in flavor diagonal Higgs couplings, e.g. for leptons

 $|\hat{y}_{\mu}| \approx 0.2 - 0.9, \ \hat{y}_{\tau} \approx 0.9 - 1.6, \ |\hat{y}_{\mu}/\hat{y}_{\tau}| \approx (0.2 - 0.6)$

In quark sector, have O(1) suppression of charm, strange Yukawas

 $\cos \alpha / \sin \beta \approx 1 \Rightarrow \hat{y}_{c,s} \approx 1 - R_Y, \quad \hat{y}_{t,b} \approx 1$

Phenomenological Implications: $b \rightarrow s \tau \bar{\mu}$

- accounting for CMS $h \to \tau \mu$ and V_{cb} within our framework can lead to sizable flavor violating $B_s \to \tau \mu$ and related $B \to K^{(*)} \tau \mu$ decay rates
 - via tree-level exchanges of A, H which are $\propto (\tan \beta)^4$, and h
 - in $B_s \to \mu \mu$, A exchange dominates but $\propto (\tan \beta)^2$
 - ⇒ sizable $R_{\tau\mu} \equiv Br(B_s \to \tau\mu)/Br(B_s \to \mu\mu)_{SM}$ is possible, without tuned cancelations in $Br(B_s \to \mu\mu)$
- e.g., in the generic 2HDM case, at $\tan \beta \lesssim 10$, $Br(B_s \to \tau \mu, K^{(*)}\tau \mu) = O(10^{-7})$ is possible, accompanied by $\sim 50\%$ suppression $Br(B_s \to \mu \mu)$

Other phenomenological implications

Sum rule for Higgs Yukawa couplings: if m_{μ} is due to rank-1 ΔM^{ℓ} , as in the BTC case, and in certain radiative approaches to the fermion mass hierarchy $(\hat{y}_{ij} \equiv Y_{ij}/Y_{ii}^{SM})$

$$\hat{y}_{\mu}\hat{y}_{\tau} - \hat{y}_{\tau\mu}\hat{y}_{\mu\tau} = \hat{y}_{t,b}(\hat{y}_{\mu} + \hat{y}_{\tau} - \hat{y}_{t,b})$$

holds up to $\mathcal{O}(m_c/m_t, m_s/m_b, m_e/m_\mu)$

- allows precision test of rank-1 hypothesis in the "1-3" paradigm
- anomalies could be seen in B_s mixing, and in $au o \mu\gamma$, $\mu o e\gamma$, $b o s\gamma$
- scaling analogous to $\tau \to \mu \gamma$ for $s \to dg$ dipole operators could play a role in ϵ'/ϵ , accounting for a potential anomaly
- If CKM mixing receives large contributions from the up sector, large CPV in $D \overline{D}$ mixing and observable $t \rightarrow ch$ are possible
- Implement leptonic heavy Higgs (H) decays to $\mu\mu$ dominate over $\tau\tau$, opposite to Type-II 2HDMs

Conclusion

- The CMS $h \rightarrow \tau \mu$ hint can be understood in models in which a second source of EWSB accounts for the masses of the 1st and 2nd generations and CKM mixing
 - the appearance of this anomaly before other anomalies in 3-2 flavor transitions would follow if the NP scale $\Lambda \gtrsim 10$ TeV (no such constraint in tree-level 2HDM)
- \checkmark a rich phenomenology is possible at both low and high p_T
- next step: construction of explicit flavor models realizing the paradigm, e.g. via abelian U(1), non-abelian U(2) horizontal symmetries, radiatively induced Yukawas for the new source of EWSB,...

Back-up slides

$$h = \cos \alpha \sqrt{2} \operatorname{Re} \phi - \sin \alpha \sqrt{2} \operatorname{Re} \phi', \quad H = \sin \alpha \sqrt{2} \operatorname{Re} \phi + \cos \alpha \sqrt{2} \operatorname{Re} \phi'$$

Higgs off-diagonal couplings:

$$y_{\mu\tau}^{h} = -\frac{\langle \mu_L | \delta M | \tau_R \rangle}{v_W} R_{\alpha\beta}, \qquad R_{\alpha\beta} = 2 \frac{\cos(\alpha - \beta)}{\sin 2\beta}$$

 ${\scriptstyle \ensuremath{\$}}$ to leading order in v_W^2/m_A^2 , and showing the relevant terms,

$$R_{\alpha\beta} = \frac{v_W^2}{m_A^2} \left(\lambda_3 + \lambda_4 + \lambda_7 \tan\beta + \dots\right)$$

 $V_{\text{quartic}} = \lambda_3(\phi^{\dagger}\phi)(\phi^{\prime\dagger}\phi^{\prime}) + \lambda_4(\phi^{\dagger}\phi^{\prime})(\phi^{\prime\dagger}\phi) + \lambda_7|\phi|^2(\phi\phi^{\prime}) + \dots$

Viable EW Sector

"Generic" case:

- CMS result requires $R_{\alpha\beta} \sim O(1)$
- can be obtained, e.g., for $m_A \sim 500 GeV$, $\lambda_3 \sim \lambda_4 \sim 2$

- compatible with EWPT
- no Landau poles below *O*(30) *TeV*
- if allow for PQ breaking, $\lambda_7 \neq 0$, no poles till M_{GUT}