Top and W+b/c jets results at LHCb

Victor Coco, on behalf of the LHCb Collaboration

CERN

November 4, 2015

Implication Workshop

Introduction

- LHCb is fully instrumented in the forward region 2 < η < 5
- Complementary to central detectors:
 - high/low-x partons involved.
 - Different production mechanism.
 (e.g. more q initiated tt production).
- Tracking in the forward region

ightarrow b,c jet tagging @ 2 < η < 5

Outline

- Heavy-flavour jet tagging @ LHCb
- W + b, cjet production ratios @ $\sqrt{s} = 7,8$ TeV
- Top production in the forward region @ $\sqrt{s} = 7,8$ TeV
- Prospects for run II

Heavy-flavour jet tagging @ LHCb

b and c jet tagging @ LHCb [JINST 10 P06013]

- ParticleFlow jets with anti- k_T (R=0.5).
- Inclusive 2-body vertexing merged in n-body vertices (SV):

 \rightarrow light jet mistag rate < 1%, $\epsilon_b \sim$ 65%, $\epsilon_c \sim$ 25%.

- SV properties (displacement, kinematics, mulitplicity,...) and jet properties combined in two BDTs.
 - BDT_{bc|udsg} optimised for heavy flavour versus light discrimination.
 - BDT_{b|c} optimised for b versus c discrimination.

- ▶ Enrichement in a b or c-jets can be obtained from cuts on the BDT distributions.
- Flavour content of a given jet sample can be obtained from 2D fit of the BDT distributions.

Victor Coco, on behalf of the LHCb Collaboration

Top and W+b/c jets results at LHCb

b and c jet tagging @ LHCb [JINST 10 P06013]

Applying a cut on BDT_{bc|udsg}:

- Relative uncertainty of 10% of (b,c)-jet tagging efficiencies.
- Uncertainties on the mis-tag rate \sim 30%.

Victor Coco, on behalf of the LHCb Collaboration

Top and W+b/c jets results at LHCb

W+(b,c)-jet production ratio @ $\sqrt{s} = 7,8 TeV$

Motivations

W+c

- LO production involve s-quark PDFs
- $Q \sim 100~GeV$ and x down to 10^{-5}
- Existing constraints based on DIS with Q ~ 1 GeV and x ~ O(0.1).
- At higher Q, measurement in the central region at TeVatron and LHC.

W+b

- Main production process sensitive to probability of gluon splitting in bb.
- LO production in 5FS from intrinsic b quark content of the proton.

Measurement of W + (b, c)-jet ratios and asymmetries.

- ▶ $W \rightarrow \mu\nu$ final state.
- Jets tagged with the SV-tagger.

$$p_T(\mu) > 20 \ GeV, \ 2.0 < \eta_\mu < 4.5$$

 $p_T(j) > 20 \ GeV, \ 2.2 < \eta_j < 4.2$
 $\Delta R(\mu, j) > 0.5$
 $p_T(\mu + j) > 20 \ GeV$

Selection:

- Prompt μ selection as in [JHEP12(2014)079].
- Events with 2 μ vetoed or classified as Z+jet.
- ▶ "j" is the highest-p_T jet.
- μ candidate used in the jet reconstruction.
- ν missed $\rightarrow p_T$ -unbalance.
- ▶ $p_T(j_{\mu} + j) > 20 \text{ GeV}$.
- ▶ Isolation defined as $p_T(\mu)/p_T(j_{\mu})$.
- Selection = fiducial volume^a

Yields Fit of the isolation in μ +jet sample

> Yields of μ_W +(b,c)jet from 2D BDT fit of SV-tagged sample and isolation fit

- μ +(b,c)tag corrected for SV tagging efficiencies.
- ▶ W+jet and W+(b,c)jet yields corrected for backgrounds from $Z \rightarrow \tau \tau$ and top.

Victor Coco, on behalf of the LHCb Collaboration

Top and W+b/c jets results at LHCb

W + (b, c)-jet ratios and asymmetries results [PRD92 (2015) 052001]

- $\blacktriangleright \mathcal{A}(Wq) = \frac{\sigma(W^+q) \sigma(W^-q)}{\sigma(W^+q) + \sigma(W^-q)}.$
- Main uncertainties from heavy flavour fraction determination (5-10%), tagging efficiency (10%), isolation fit (4-10%), and for W + b the Top background (13%)
- Predictions @NLO: MCFM[PRD62(00)114012] and CT10 PDF set,[PRD82(10)074024].

- |A(Wc)| is 2σ lower than predictions using CT10 PDFs.
- Could point to asymmetric (s, s) PDFs.
- Data do not support large contribution from intrinsic b-quark in the proton:

 \rightarrow Insufficient precision to rule out extra contribution at the $\mathcal{O}(10\%)$ level.

Top and W+b/c jets results at LHCb

Top production in the forward region $@\sqrt{s} = 7,8 TeV$

Top quark production in pp collisions

Motivation for studies in the forward region:

- test for the differential predictions.
- reduced g-initiated production.
- enhanced $t\bar{t}$ charge asymmetry

Large uncertainty on the high-x gluon PDFs:

- ATLAS/CMS tt measurements constraint the high-x gluon PDF [JHEP07(2013)167]
- tt
 tr
 tr

 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr

 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr

 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr

 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr
 tr

 tr
 tr
 tr
 tr
 tr
 tr
 tr
 <pttr>
 tr

 tr
 <ptr
 <pttr>
 tr
 <pttr
 <p>tr
 <pttr
 <p>tr
 <pttr
 <pttr
 <pttr>
 tr

 tr
 tr
 tr
 tr

 tr
 tr

 tr
 tr
 tr

 tr
 tr

 tr

Selection and strategy

- Combined measurement of the single-t and $t\bar{t}$ production in the $\mu + b$ channel.
- $t\bar{t}$ accounts for 3/4 of the top production.
- Tightened fiducial region to enhance top contribution.
 - ▶ p_T(µ) > 25 GeV.
 - ▶ $50 < p_T(b) < 100 \text{ GeV}$
- Reduces the uncertainty associated to QCD jets.
- Improves S/\sqrt{B} at large $p_T(\mu + b)$.
- Identical selection to W + (b, c) otherwise.

- $p_T(\mu + b)$ provides discrimination between top and W + b-jets.
- $A(Wb) \sim 1/3$ while $A(top) \sim 0.1$, mainly from single-t.
- Look for an excess of $\mu + b$ events and deviation of A as function of $p_T(\mu + b)$.
- Needs good control on W + b-jets predictions.

Victor Coco, on behalf of the LHCb Collaboration

SM predictions

- NLO predictions from MCFM [JPG42(2015)1,015005] in the 4FS and CT10 PDF set [PRD82(2010)074024].
- ▶ NLO PowhegBox [JHEP01(2012)137] showered with Pythia8 [CPC178(2008)852-867]

(for consistency check)

- Prediction uncertainties from PDFs, α_s and scale.
- Integration uncertainties and from $m_{c,b,t}$ negligible.
- \blacktriangleright $\alpha_{\rm s}$ and PDF uncertainties are found to be close to 100% correlated between bins.
- Detector response folded to the prediction:
 - Main contribution from μ efficiencies, b-jet p_T migration, (b,c)-tagging efficiencies.
- $\sigma(Wb)/\sigma(Wj)$ theory uncertainties partially cancel in the ratio.
- In the most significant bin of $p_T(\mu + b)$:

rel. error[$\sigma(Wb)/\sigma(Wj)$] ~ $\frac{1}{3}$ rel. error[$\sigma(Wb)$]

Measure W+jets yields to fix the scale of W + b-jets from data

Victor Coco, on behalf of the LHCb Collaboration

Top and W+b/c jets results at LHCb

In situ constraint from W+jet

PRL 115 (2015) 112001

- Same procedure than for the previous measurement.
- The isolation fit is performed in 4 $p_T(\mu + j)$ bins [20; 45; 70; 95; ∞].

- W+jet data consistent with NLO predictions at the 1σ level.
- Slightly lower A, consistent with slightly higher $\sigma(W^-j)/\sigma(Zj)$.
- Low uncertainty allows to fix the scale of W(c, b) from W(c, b)/Wj predictions.

 \rightarrow Validated on Wc sample, yields in agreements with the NLO predictions.

W + b-tag yields and asymmetry

PRL 115 (2015) 112001

- Discrepancy between data and Wb predictions.
- ▶ Good agreement with *Wb* + *top* predictions.
- Binned likelihood fit of N(top) and $\mathcal{A}(top)$.
- Systematic uncertainties treated as Gaussian constraints.
- ▶ N(top) and A(top) shapes are fixed. The total yields is allowed to vary.
- Profile likelihood to compare Wb + top and Wb hypotheses

5.4 σ observation of top production in the forward region.

Victor Coco, on behalf of the LHCb Collaboration

Top and W+b/c jets results at LHCb

Cross section measurements

PRL 115 (2015) 112001

• The observed excess above *Wb* prediction is used to measure $\sigma(t\bar{t} + t + \bar{t})$.

$$\sigma(top)[7 \ TeV] = 239 \pm 53(\text{stat}) \pm 33(\text{syst}) \pm 24(\text{theory}) \text{ fb}$$

 $\sigma(top)[8 \ TeV] = 289 \pm 43(\text{stat}) \pm 40(\text{syst}) \pm 29(\text{theory}) \text{ fb}$

 b-tagging, jet energy scale and isolation fit related uncertainties dominates the systematics uncertainties.

Cross sections at $\sqrt{s} = 7,8$ TeVare consistant with NLO SM predictions.

Prospects for Run II and LHCb Upgrade

VB + jets

- ▶ Z+jet [JHEP 01(2014)33], Z+b-jet [JHEP 01(2015)064], Z+D [JHEP 04(2014)91] performed at 7 *TeV* \rightarrow to be updated.
- At $\sqrt{s} = 13$ TeV, W+(b,c, ℓ)jet cross sections increases by a factor $\sim 2 2.5$.
- ► A larger fraction of visible events in LHCb acceptance.
- \blacktriangleright 7,8 TeV ${\cal A}$ measurements are dominated by statistical error.
- Part of the systematic uncertainties are of statistical nature and methods could be improved.
- Differential measurements becomes accessible.
- The impact of W+jet differential cross-section and asymmetry measurements on large-x d-quark PDF studied in [arXiv:1505.01399].
- Enhanced sensitivity for high-p_T jet and high-η lepton.
- Up to ~ 35% improvement of the d-quark PDF uncert. at x = 0.7 for a 1% systematic uncert. measurement with run II dataset.

Top production

[LHCb-PUB-2013-009]

		$d\sigma({ m fb})$	8 TeV		$14 { m TeV}$			
•	Cross-sections and acceptance increased at run II	lb	504	±	94	4366	±	663
		lbj	198	\pm	35	2335	±	323
		lbb	65	\pm	12	870	\pm	116
	\sim 20 $ imes$ RunI yields.	lbbj	26	\pm	4	487	\pm	76
	\sim 5% stat. uncertainty at RunII on μb	l^+l^-	79	\pm	15	635	\pm	109
		l^+l^-b	39	\pm	8	417	\pm	79

- ▶ Work needed on the systematic uncertainties: b-jet tagging, isolation fit, discrimination w.r.t W + b.
- Separation between $t\bar{t}$ and single-t using the various final states.
- Differential cross-section.
- Investigate overlap region with ATLAS-CMS

common particle level / pseudo top definitions to be studied

Victor Coco, on behalf of the LHCb Collaboration

tt charged asymmetry

- Originally proposed in [PRL(2011)107].
- Further work in [LHCb-PUB-2013-009] and [PRD91(2015)054029]
- Considering ℓb : $A_{\ell} = \frac{N(\mu^+ b) N(\mu^- b)}{N(\mu^+ b) + N(\mu^- b)}$.

• Lower fraction of $gg \rightarrow t\overline{t}$:

 \rightarrow less dilution of the asymmetry.

- ▶ In $q\bar{q} \rightarrow t\bar{t}$:
 - high-x and low-x needed to end in LHCb.
 - high-x parton from the valence q. \rightarrow less dilution from unknown q direction.

- Background asymmetry need to be well under control.
- > A'_{SM} out of reach with Run I (and probably II) dataset (5 10% statistical uncertainty).
- With upgrade statistics (50 fb^{-1}) with $A_{SM}^{l} = (1.4 2.0)$ expect 0.3% statistical error.

Outlook

- Developed efficient (b, c)-jet tagging method with low light-jet mistag rate.
- W + (b, c)-jets production ratios and A in good agreement with NLO predictions.
- Observed top production in the forward region.
- ▶ Combined $t\bar{t}$ and single-*t* cross sections at $\sqrt{s} = 7,8$ TeV in good agreement with NLO predictions.
- ▶ LHCb starting its Top physics program, more to come with RunII

BACKUP

Sytematic uncertainties

For significance evaluation and cross section measurement

PRL 115 (2015) 112001

source	uncertainty
GEC	2%
$p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates	5%
jet reconstruction	2%
SV-tag BDT templates	5%
<i>b</i> -tag efficiency	10%
trigger & μ selection	$2\%^\dagger$
jet energy	$5\%^\dagger$
$W \to \tau \to \mu$	$1\%^\dagger$
luminosity	$12\%^\dagger$
Total	14%
Theory	10%

Victor Coco, on behalf of the LHCb Collaboration

Inclusive vertexing

- Tracks consistent with B,D decays

 - Displaced: χ²_{IP} > 16
 High p_T: p_T > 0.5 GeV

Victor Coco, on behalf of the LHCb Collaboration

Inclusive vertexing

- Tracks consistent with B,D decays
- Inclusive 2-body vertexing
 - DOCA < 0.2 mm, χ²_{vertex} < 10.
 0.4 < m_{vertex} < m_B.
 ΔR(PV − SV, j) < 0.5.

Inclusive vertexing

- Tracks consistent with B,D decays
- Inclusive 2-body vertexing
- Merge into n-body
 - based on shared tracks
 - $\blacktriangleright p_T > 2 \text{ GeV}, \chi^2_{d_{PV,SV}} > 5\sigma.$
 - ► *d*_{PV,SV}/*p* < 1.5 *mm*/*GeV*.
 - max 1 track with $\Delta R(tr, j) > 0.5$.

Inclusive vertexing

- Tracks consistent with B,D decays
- Inclusive 2-body vertexing
- Merge into n-body

\blacktriangleright mistag rate well below 1% for b tag efficiency $\sim 65\%$, c tag efficiency $\sim 25\%.$

Victor Coco, on behalf of the LHCb Collaboration

Top and W+b/c jets results at LHCb

Performances in simulation

further discrimination with BDTbc vs udsg cut

 Flavour content can be obtained by fitting the 2D BDT distributions but when needed they can be used to cut.

Alternative Tagged yields

Systematics for BDT shapes modeling

- Alternative fit using SV based only variables
 - N_{trk} for b-jet discrimination.
 - *M_{cor}(SV*) for c-jet discrimination.
- > 2D fit in each (p_T, η) bins, for each sample.
- Difference with 2D BDT fits used as BDT shapes modeling uncertainties.
- ▶ 1-2% uncertainty on the flavour fraction.

Fit of the χ^2_{IP} of the highest p_T track or μ in the jet.

- ► Calibration of the χ^2_{IP} from the W+jet sample (light jet dominated)
 - ▶ 95% in MC.
 - $\sigma_{\chi^2_{IP}}$ 10% worse in data.
 - Take the correction as universal
 - s component source of uncertainties

Untagged yields

Fitting the χ^2_{IP} of the highest- p_T track of the probe jet.

- Requires $p_T(trk)/p_T(j) > 0.1$ and has low fake probability.
- Pros: Inclusive jet sample (covers 95% of the jets).
- \blacktriangleright Cons: dominated by light parton jets \rightarrow large uncertainties (10 30%) on the c jets contribution.

Untagged yields Fitting the $\chi^2_{I\!P}$ of the highest- μ of the probe jet.

- Adds muon identification to the previous sample
- Pros: Large heavy flavour contribution
- Cons: lower statistics ($\mathcal{O}(10\%)$) and only acounts from semi-leptonic decays.

Tagged yields from 2D BDT fit

From probe jet with a high- $p_T \mu$

▶ In B+jet sample

▶ In D+jet sample

Tagged yields from 2D BDT fit

From probe jet with a high- p_T track

▶ In B+jet sample

► In D+jet sample

Top and W+b/c jets results at LHCb

Light jet misidentification

- \blacktriangleright prompt seen as displaced \rightarrow studied through "backward" SV.
- decays of long-lived strange hadrons and interaction with material \rightarrow studied through SV with FD/p > 1.5 mm/GeV.
- Studied in W+jet sample to mitigate the same effect from (b,c)-jets.

Systematic uncertainties on the (b, c)-jet yields

source	b jets	c jets
BDT templates [*]	$\approx 2\%$	$\approx 2\%$
light-parton-jet large IP component*	$\approx 5\%$	$\approx 10 - 30\%$
IP resolution	—	-
hadron-as-muon probability (muon-jet subsample only)	5%	20%
out-of-jet (b, c) -hadron decay	—	-
gluon splitting	1%	1%
number of pp interactions per event	-	—

In particular, in the determination of (b, c)-jet yields in the efficiency denominator:

- $\blacktriangleright~5-30\%$ from the variation of the large-IP component of light parton jets use in the fit of the χ^2_{IP} .
- > 5 20% from altering the hadron misID to match the fraction of μ in prompt jet in simulation wrt. data.

W+jet event selection

• Highest p_T jet and highest p_T , prompt μ from same PV.

μ	$\mathbf{W} + \mathbf{jet}$	$\mathbf{Z} + \mathbf{jet}$
trigger	no OS μ	$60 < M_{\mu\mu} < 120$ GeV
IP < 0.04 mm, good track	$p_T(j_\mu+j)>20~GeV$	
$(E_{ECAL}+E_{HCAL})/p<4\%$		

- $p_T(j_\mu + j) > 20 \ GeV \equiv p_T(\mu + j) > 20 \ GeV$ (for Wj to about 1%)
- ▶ Isolation defined by $p_T(\mu)/p_T(j_\mu)$, were j_μ is the jet clustered with the μ .

Getting the Wc and Wb components

Wc yields extraction

- Isolation templates using the same method than for Wj.
- $Z[\mu(\mu)]c$ from $Z[\mu\mu]c$ in data, extracted with 2D BDT fit.

Getting the Wc and Wb components

Wb yields extraction

- Isolation templates using the same method than for Wj.
- $Z[\mu(\mu)]b$ from $Z[\mu\mu]b$ in data, extracted with 2D BDT fit.

Jets @ LHCb

- ParticleFlow approach:
 - Charge particles from tracking.
 - Neutrals from calorimetry.
- Anti- k_T with R = 0.5.
- Jet Energy Scale:
 - corrections from MC (factor 0.9 to 1.1)
 - Validated on data, JES data vs. MC difference < 5%
- Jet Energy Resolution:
 - ▶ ~ 15 20% for $p_T \in [10, 100 \text{ GeV}]$
 - Same ball-park than GPD for low-p_T.
 - Studied in Z + jet and b-enriched dataset.

Z+jet @ 7TeV [JHEP01 (2014) 033]

Getting the Wc and Wb components

Consistency check

- Alternative fit with M_{cor} , N_{trk} on events with BDT(bc|udsg) > 0.2.
- > Yields in 5% agreement with nominal fit.
- \blacktriangleright misidentification probability fo W+light $\sim 0.3\%$ which agrees with simulation.

Systematic uncertainties

[PRD92 (2015) 052001]

- μ +(b,c)tag corrected for SV tagging efficiencies.
- ▶ W+jet and W+(b,c)jet yields corrected for backgrounds from $Z \rightarrow \tau \tau$ and top.
- Charge asymmetry: $\mathcal{A}(Wq) = \frac{\sigma(W^+q) \sigma(W^-q)}{\sigma(W^+q) + \sigma(W^-q)}$.
 - Obtained from $\mu + (b, c)$ yields in $p_T(\mu)/p_T(j_\mu) > 0.9$.
 - Most backgrounds are charge symmetric (only introduce dilution) $\rightarrow \mathcal{A} \sim \frac{\mathcal{A}_{raw}}{purity}$

Source	$\frac{\sigma(Wb)}{\sigma(Wj)}$	$\frac{\sigma(Wc)}{\sigma(Wj)}$	$\frac{\sigma(Wj)}{\sigma(Zj)}$	$\mathcal{A}(Wb)$	$\mathcal{A}(Wc)$
Muon trigger and selection	_	_	2%	_	_
GEC	1%	1%	1%	-	_
Jet reconstruction	2%	2%	_	_	_
Jet energy	2%	2%	1%	0.02	0.02
(b, c)-tag efficiency	10%	10%		-	-
SV-tag BDT templates	5%	5%		0.02	0.02
$p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates	10%	5%	4%	0.08	0.03
Top quark	13%	_	_	0.02	
$Z \rightarrow \tau \tau$	-	3%	—	-	-
Other electroweak	_	_	_	_	_
$W \to \tau \to \mu$	_	-	1%	-	-
Total	20%	13%	5%	0.09	0.04

SM predictions

- NLO prediction from MCFM[JPG(2015)42] with 4FS and CT10 PDF set,[PRD(2010)82].
- NLO PowhegBox[JHEP(2012)1201] showered with Pythia8[CPC(2008)178:852-867] (for consistency check)
- Prediction uncertainties from PDFs, α_s and scale.
 - Uncertainties from integration negligible wrt. other uncertainties.
 - PDF uncertainties using asymmetric Hessian approach.
 - scale uncertainties using 7-point scale method.
 - α_s uncertainties using envelope of $\alpha_s(M(Z)) \in [0.117, 0.118, 0.119]$.
 - Uncertainties from m_{c,b,t} found to be negligible.
- α_s and PDF uncertainties are found to be close to 100% correlated between bins.

Z+jet production in pp at $\sqrt{s} = 7$ TeV

Result

- ▶ Predictions from POWHEG+PYTHIA at $O(\alpha_s)$ and $O(\alpha_s^2)$ with different PDF sets.
- Predictions from FEWZ at $O(\alpha_s^2)$ not corrected for hadronisation and underlying event.

37 / 17

- Not corrected for ESR
- Shapes in good agreement with NLO

Central forward $b\bar{b}$ asymmetry $A_{FC}^{b\bar{b}}$

 Depending on new physics flavour structure, asymmetry could shows up in the bottom sector.

```
[arXiv:1108.3301,Kahawala et al.]
```

- At LHC access to the forward central asymmetry.
- Expected to be O(1%) from QCD with an extra O(1%) in the Z mass region.

- ▶ Analysis performed with 1 fb⁻¹
- Pairs of b-jets with $\Delta \phi(bb) > 2.6 \ rad.$
- One of the b-jets charge is tagged with a muon.
- Purity of the charge tagging 70.3 ± 0.3%

Central forward $b\bar{b}$ asymmetry $A_{FC}^{b\bar{b}}$ Result with 1 tb^{-1}

PRL 113 (2014) 082003

- No deviation from expectation with available statistics.
- Still 2 fb^{-1} of the Run I data to be analysed.
- More efficient b-tagging available now.

PHYSICAL REVIEW D 86, 034021 (2012)

Next-to-leading order QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC

TABLE V. Inclusive event cross sections (in pb) for different PDF sets including PDF + α_s uncertainties at 68% C.L., determined according to the PDF4LHC NLO prescription [22] (with $\mu_R = \mu_F = \mu_0$).

	W^+b incl.		$W^+(bb)$ incl.	W	⁻ b incl.	$W^{-}(bb)$ incl.		
	4FNS	5FNS	4FNS	4FNS	5FNS	4FNS		
NNPDF2.1 [19]	44.1	59.2 ± 1.7	11.4 ± 0.3	27.6	36.2 ± 1.0	7.1 ± 0.2		
CTEQ6.6 [18,20]	42.6	56.7 ± 2.1	10.9 ± 0.3	26.3	34.8 ± 1.3	6.8 ± 0.2		
MSTW2008 [21]	44.2	59.8 ± 1.7	11.5 ± 0.3	28.6	37.9 ± 1.0	7.4 ± 0.2		