The decay $\Lambda_b \to \Lambda(\to p\pi^-)\ell^+\ell^-$

Danny van Dyk
Universität Zürich

Implications of LHCb Measurements and future prospects
November 4th, 2015

Why bother with $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$?

$B \rightarrow K^* \ell^+ \ell^-$ is being measured with increasing precision. Why spend effort on $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$?

pro arguments, sorted from weakest to strongest

- independent confirmation of results: same $b \rightarrow s \ell^+ \ell^-$ operators, different hadronic matrix elements
- $\Gamma_\Lambda \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \rightarrow K \pi \ell^+ \ell^-$ where non-res. P-wave contributions are unconstrained)
- doubly weak decay: complementary constraints on $b \rightarrow s \ell^+ \ell^-$ physics with respect to $B \rightarrow K^* \ell^+ \ell^-$
Why bother with $\Lambda_b \to \Lambda \ell^+ \ell^-$?

$B \to K^* \ell^+ \ell^-$ is being measured with increasing precision. Why spend effort on $\Lambda_b \to \Lambda \ell^+ \ell^-$?

pro arguments, sorted from weakest to strongest

- **Independent confirmation of results**: same $b \to s \ell^+ \ell^-$ operators, different hadronic matrix elements

- $\Gamma_{\Lambda} \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \to K \pi \ell^+ \ell^-$ where non-res. P-wave contributions are unconstrained)

- Doubly weak decay: complementary constraints on $b \to s \ell^+ \ell^-$ physics with respect to $B \to K^* \ell^+ \ell^-$
Why bother with $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$?

$B \rightarrow K^* \ell^+ \ell^-$ is being measured with increasing precision. Why spend effort on $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$?

pro arguments, sorted from weakest to strongest

- independent confirmation of results: same $b \rightarrow s \ell^+ \ell^-$ operators, different hadronic matrix elements

- $\Gamma_\Lambda \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \rightarrow K \pi \ell^+ \ell^-$ where non-res. P-wave contributions are unconstrained)

- doubly weak decay: complementary constraints on $b \rightarrow s \ell^+ \ell^-$ physics with respect to $B \rightarrow K^* \ell^+ \ell^-$
Why bother with $\Lambda_b \to \Lambda \ell^+ \ell^-$?

$B \to K^* \ell^+ \ell^-$ is being measured with increasing precision. Why spend effort on $\Lambda_b \to \Lambda \ell^+ \ell^-$?

pro arguments, sorted from weakest to strongest

- independent confirmation of results: same $b \to s \ell^+ \ell^-$ operators, different hadronic matrix elements

- $\Gamma_\Lambda \simeq 2.5 \cdot 10^{-6}$ eV: small width approximation fully applicable (compare $B \to K \pi \ell^+ \ell^-$ where non-res. P-wave contributions are unconstrained)

- doubly weak decay: complementary constraints on $b \to s \ell^+ \ell^-$ physics with respect to $B \to K^* \ell^+ \ell^-$
$\Lambda_b \rightarrow \Lambda$ Hadronic Matrix Elements

[adapted from Blake,Gershon,Hiller 1501.03309]

Large Recoil

✔ form factor relations
[Feldmann/Yip 1111.1844]

✗ non-factorizable $\bar{c}c$

✗ weak-scattering

✗ form factors

Low Recoil

✔ form factor relations

✔ OPE

✔ form factor (leading power only)
[Detmold/Lin/Meinel/Wingate 1212.4827]

w.i.p. FF beyond leading power
[Meinel 1401.2685]

04.11.2015 $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\ell^+\ell^-$
Λ_b → Λ Hadronic Matrix Elements

![Graph showing the SM prediction and data for the branching ratio as a function of \(q^2 \) in GeV^2/c^4.]

Large Recoil

- ✔ form factor relations
 - [Feldmann/Yip 1111.1844]
- ✗ non-factorizable \(\bar{c}c \)
- ✗ weak-scattering
- ✗ form factors

Low Recoil

- ✔ form factor relations
- ✔ OPE
- ✔ form factor (leading power only)
 - [Detmold/Lin/Meinel/Wingate 1212.4827]
- w.i.p. FF beyond leading power
 - [Meinel 1401.2685]
Kinematics and Decay Topology

\[\Lambda_b(p) \rightarrow \Lambda(k) \[\rightarrow p(k_1) \pi^-(k_2)] \ell^+(q_1) \ell^-(q_2) \]

3 independent decay angles only for unpolarized \(\Lambda_b \)

- \(\cos \theta_\Lambda \sim \overline{k} \cdot q \)
 polar (helicity) angle in \(\Lambda \) rest frame

- \(\cos \theta_\ell \sim k \cdot \overline{q} \)
 polar (helicity) angle in \(\ell^+ \ell^- \) rest frame

- \(\cos \phi \sim \overline{k} \cdot \overline{q} \)
 azimuthal angle between decay planes

where \(\overline{k} = k_1 - k_2, \overline{q} = q_1 - q_2 \)
Angular Distribution of $\Lambda_b \to \Lambda [\to p\pi^-]\ell^+\ell^-$

we define the angular distribution as

$$\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_\Lambda d\phi} \equiv K(q^2, \cos\theta_\ell, \cos\theta_\Lambda, \phi)$$

when considering only SM and chirality-flipped operators

$$K = 1 \left(K_{1ss} \sin^2\theta_\ell + K_{1cc} \cos^2\theta_\ell + K_{1c} \cos\theta_\ell \right)$$

$$+ \cos\theta_\Lambda \left(K_{2ss} \sin^2\theta_\ell + K_{2cc} \cos^2\theta_\ell + K_{2c} \cos\theta_\ell \right)$$

$$+ \sin\theta_\Lambda \sin\phi \left(K_{3sc} \sin\theta_\ell \cos\theta_\ell + K_{3s} \sin\theta_\ell \right)$$

$$+ \sin\theta_\Lambda \cos\phi \left(K_{4sc} \sin\theta_\ell \cos\theta_\ell + K_{4s} \sin\theta_\ell \right)$$

no further observables possible up to mass-dimension six

$$K_n \equiv K_n(q^2)$$
Angular Observables

- matrix elements parametrized through 8 transversity amplitudes $A^{\lambda \chi M}_{\lambda \chi M}$

\[A^R_{\perp 1}, A^R_{\parallel 1}, A^R_{\perp 0}, A^R_{\parallel 0}, \text{ and } (R \leftrightarrow L) \]

\(\lambda \) dilepton chirality
\(\chi \) transversity state, similar as in $B \rightarrow K^* \ell^+ \ell^-$
\(M \) third component of dilepton angular momentum

- express angular observables through transversity amplitudes, e.g.

\[K_{1cc} = \frac{1}{2} \left[|A^R_{\perp 1}|^2 + |A^R_{\parallel 1}|^2 + (R \leftrightarrow L) \right] \]

\[K_{2c} = \frac{\alpha}{2} \left[|A^R_{\perp 1}|^2 + |A^R_{\parallel 1}|^2 - (R \leftrightarrow L) \right] \]

\[\vdots \]

\(\alpha \): parity violating $\Lambda \rightarrow p \pi^-\pi^0$ coupling

full list of observables in the backup slides
Angular Observables

- matrix elements parametrized through 8 transversity amplitudes $A_{\lambda M}$

$$A_{\perp 1}^R, A_{\parallel 1}^R, A_{\perp 0}^R, A_{\parallel 0}^R,$$ and $(R \leftrightarrow L)$

λ dilepton chirality

χ transversity state, similar as in $B \rightarrow K^* \ell^+ \ell^-$

M third component of dilepton angular momentum

- express angular observables through transversity amplitudes, e.g.

$$K_{1cc} = \frac{1}{2} \left[|A_{\perp 1}^R|^2 + |A_{\parallel 1}^R|^2 + (R \leftrightarrow L) \right]$$

$$K_{2c} = \frac{\alpha}{2} \left[|A_{\perp 1}^R|^2 + |A_{\parallel 1}^R|^2 - (R \leftrightarrow L) \right]$$

...$

α: parity violating $\Lambda \rightarrow p \pi^-$ coupling

full list of observables in the backup slides
Observables at Low Recoil

- 3 forward-backward asymmetries: A_{FB}^{ℓ}, A_{FB}^{Λ}, $A_{FB}^{\ell\Lambda}$
- rate of longitudinally-polarized leptons: F_0
- LHCb has measured them with the exception of $A_{FB}^{\ell\Lambda}$

Sensitivities to Wilson Coefficients C_7, C_9, C_{10}

\[
F_0 \sim \rho_1^\pm \sim |C_{79} \pm C_{7'9'}|^2 + |C_{10} \pm C_{10'}|^2
\]
\[
A_{FB}^{\ell} \sim \text{Re}\{\rho_2\} \sim \text{Re}\{C_{79}C_{10}^* - C_{7'9'}C_{10'}^*\}
\]
\[
A_{FB}^{\ell\Lambda} \sim \rho_3^\pm \sim \text{Re}\{(C_{79} \pm C_{7'9'})(C_{10} \pm C_{10'})\}
\]
\[
A_{FB}^{\Lambda} \sim \text{Re}\{\rho_4\} \sim |C_{79}|^2 - |C_{7'9'}|^2 + |C_{10}|^2 - |C_{10'}|^2
\]

- ρ_1^\pm, ρ_2 also arise in $B \to K(\ast)\ell^+\ell^-$ decays
- ρ_3^\pm, ρ_4 provide new and complementary constraints on Wilson coefficients!
 - ρ_3^-, ρ_4 also emerge in non-resonant $B \to K\pi\ell^+\ell^-$

[Das/Hiller/Jung/Shires 1406.6681]
New Types of Constraints

moch fit of $C_{9(9')}^{}$ given hypothetical measurements, while keeping

$$C_{10(10')}^{} = C_{10(10')}^{\text{SM}} \simeq (-4, 0) \text{ fixed}$$

- existing constraints
 - ρ_1^\pm blue banded constraints
 - $\rho_2^{}$ golden banded constraint

- new constraints
 - $\rho_3^{}$ green banded constraints
 - $\rho_4^{}$ red hyperbolic constraint

black square: SM point

04.11.2015 $\Lambda_b \rightarrow \Lambda(\rightarrow \rho \pi^-) \ell^++\ell^-$
New Types of Constraints

moch fit of $C_{9(9')}$ given hypothetical measurements, while keeping

$$C_{10(10')} = C_{10(10')}^{\text{SM}} \simeq (-4, 0) \text{ fixed}$$

- **existing constraints**
 - ρ_1^\pm blue banded constraints
 - ρ_2 golden banded constraint

- **new constraints**
 - ρ_3 green banded constraints
 - ρ_4 red hyperbolic constraint

black square: SM point
New Types of Constraints

moch fit of $C_{9(9')}$ given hypothetical measurements, while keeping

$$C_{10(10')} = C_{10(10')}^{SM} \approx (-4, 0) \text{ fixed}$$

- existing constraints
 - ρ_1^\pm blue banded constraints
 - ρ_2 golden banded constraint

- new constraints
 - ρ_3 green banded constraints
 - ρ_4 red hyperbolic constraint

black square: SM point
New Types of Constraints

moch fit of $C_{9(9')}$ given hypothetical measurements, while keeping $C_{10(10')} = C^{SM}_{10(10')} \simeq (-4, 0)$ fixed

- existing constraints
 - ρ^{\pm} blue banded constraints
 - ρ_2 golden banded constraint

- new constraints
 - ρ_3 green banded constraints
 - ρ_4 red hyperbolic constraint

black square: SM point
Fit

setup as in [Beaujean, Bobeth, DvD 1310.2478]

- $B \to X_s \{\gamma, \ell^+ \ell^-\}$ (Belle, BaBar)
- $B_s \to \mu^+ \mu^+$ (CMS+LHCb)
- $\Lambda_b \to \Lambda \ell^+ \ell^-$ (LHCb)
 - $B, F_0, A^\ell_{FB}, A^\Lambda_{FB}$
 - low-recoil data only!
- $\Lambda_b \to \Lambda$ form factors
 - lattice results in heavy-quark limit [Detmold, Lin, Meinel, Wingate 1212.4827]
 - sum rule results in large-energy limit [Feldmann, Yip 1111.1844]
- $\chi^2 / \text{d.o.f.} = 4.77 / 14 \Rightarrow p = 0.98$
- prefers $C_9^{NP} \simeq +1$!

shaded areas: 68%, 95% prob. regions
◆: SM point ×: local modes
Conclusion

– the decay $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi^-)\ell^+\ell^-$ yields powerful constraints on $b \rightarrow s\ell^+\ell^-$ Wilson coefficients
 – 10 angular observables
 – independent check of the tension in $B \rightarrow K^*\ell^+\ell^-$
 – complementary information to existing $B \rightarrow K^*\ell^+\ell^-$ constraints
– theory status
 – low recoil: catching up to $B \rightarrow K^*\ell^+\ell^-$
 – large recoil: much work ahead!
– fit prefers $C_{9}^{NP} \sim +1, C_{7,10}^{NP} \sim 0$
 – compare $B \rightarrow K^*\ell^+\ell^-$: $C_{9}^{NP} \sim -1$
Backup Slides
$\Lambda \rightarrow N\pi$ Hadronic Matrix Element

– $\Lambda \rightarrow N\pi$ is a parity-violating weak decay
– branching fraction $\mathcal{B}[\Lambda \rightarrow N\pi] = (99.7 \pm 0.1)\%$ [PDG, our naive average]

– equations of motions reduce independent matrix elements to 2
– we choose to express them through
 – decay width Γ_Λ
 – parity-violating coupling α

– within small width approximation, Γ_Λ cancels
– α well known from experiment: $\alpha_{\rho\pi^-} = 0.642 \pm 0.013$ [PDG average]
\[\Lambda_b \rightarrow \Lambda(\rightarrow \Lambda N \pi) \ell^+ \ell^- \] Angular Observables

\begin{align*}
K_{1ss} &= \frac{1}{4} \left[|A_{\perp 1}^R|^2 + |A_{\parallel 1}^R|^2 + 2|A_{\perp 0}^R|^2 + 2|A_{\parallel 0}^R|^2 + (R \leftrightarrow L) \right] \\
K_{1cc} &= \frac{1}{2} \left[|A_{\perp 1}^R|^2 + |A_{\parallel 1}^R|^2 + (R \leftrightarrow L) \right] \\
K_{1c} &= -\Re \left(A_{\perp 1}^R A_{\parallel 1}^{*R} - (R \leftrightarrow L) \right) \\
K_{2ss} &= -\frac{\alpha}{2} \Re \left(A_{\perp 1}^R A_{\parallel 1}^{*R} + 2A_{\perp 0}^R A_{\parallel 0}^{*R} + (R \leftrightarrow L) \right) \\
K_{2cc} &= -\alpha \Re \left(A_{\perp 1}^R A_{\parallel 1}^{*R} + (R \leftrightarrow L) \right) \\
K_{2c} &= \frac{\alpha}{2} \left[|A_{\perp 1}^R|^2 + |A_{\parallel 1}^R|^2 - (R \leftrightarrow L) \right] \\
K_{3sc} &= -\frac{\alpha}{\sqrt{2}} \Im \left(A_{\perp 1}^R A_{\perp 0}^{*R} - A_{\parallel 1}^R A_{\parallel 0}^{*R} + (R \leftrightarrow L) \right) \\
K_{3s} &= -\frac{\alpha}{\sqrt{2}} \Im \left(A_{\perp 1}^R A_{\parallel 0}^{*R} - A_{\parallel 1}^R A_{\perp 0}^{*R} + (R \leftrightarrow L) \right) \\
K_{4sc} &= \frac{\alpha}{\sqrt{2}} \Re \left(A_{\perp 1}^R A_{\perp 0}^{*R} - A_{\parallel 1}^R A_{\parallel 0}^{*R} + (R \leftrightarrow L) \right) \\
K_{4s} &= \frac{\alpha}{\sqrt{2}} \Re \left(A_{\perp 1}^R A_{\parallel 0}^{*R} - A_{\parallel 1}^R A_{\perp 0}^{*R} - (R \leftrightarrow L) \right)
\end{align*}
Simple Observables

start with integrated decay width

\[\Gamma = 2K_{1ss} + K_{1cc} \]

define further observables \(\mathcal{X} \) as weighted \((\omega_{\mathcal{X}})\) integrals

\[\mathcal{X} = \frac{1}{\Gamma} \int \frac{d^3\Gamma}{d\cos\theta_\ell \ d\cos\theta_\Lambda \ d\phi} \omega_{\mathcal{X}}(\cos\theta_\ell, \cos\theta_\Lambda, \phi) d\cos\theta_\ell \ d\cos\theta_\Lambda \ d\phi \]

A leptonic forward-backward asymmetry

\[A_{FB}^{\ell} = \frac{3}{2} \frac{K_{1c}}{2K_{1ss} + K_{1cc}} \quad \text{with} \quad \omega_{A_{FB}^{\ell}} = \text{sign} \cos\theta_\ell \]

B fraction of longitudinal dilepton pairs

\[F_0 = \frac{2K_{1ss} - K_{1cc}}{2K_{1ss} + K_{1cc}} \quad \text{with} \quad \omega_{F_0} = 2 - 5 \cos^2\theta_\ell \]
Simple Observables

start with integrated decay width

\[\Gamma = 2K_{1ss} + K_{1cc} \]

define further observables \(X \) as weighted \((\omega_X) \) integrals

\[X = \frac{1}{\Gamma} \int \frac{d^3\Gamma}{d \cos \theta_\ell \, d \cos \theta_\Lambda \, d \phi} \omega_X(\cos \theta_\ell, \cos \theta_\Lambda, \phi) \, d \cos \theta_\ell \, d \cos \theta_\Lambda \, d \phi \]

C hadronic forward-backward asymmetry

\[A_{FB}^\Lambda = \frac{1}{2} \frac{2K_{2ss} + K_{2cc}}{2K_{1ss} + K_{1cc}} \quad \text{with} \quad \omega_{A_{FB}^\Lambda} = \text{sign} \cos \theta_\Lambda \]

D combined forward-backward asymmetry

\[A_{FB}^{\ell \Lambda} = \frac{3}{4} \frac{K_{2c}}{2K_{1ss} + K_{1cc}} \quad \text{with} \quad \omega_{A_{FB}^{\ell \Lambda}} = \text{sign} \cos \theta_\Lambda \, \text{sign} \cos \theta_\ell \]