"Penguin Pollution" in $B \rightarrow J/\psi X$ Decays

Martin Jung

Implications of LHCb measurements and future prospects

5th of November 2015, CERN

Consequences of the Flavour Problem

Higher precision necessary

- Experimental challenge: Control systematics at high luminosities
- Theoretical challenge: Reduce hadronic uncertainties

More complex analyses, e.g.

- Inclusion of neglected contributions
- Differential distributions even for rare decays
- Possible due to experimental advances!

Combination of many observables

- Use more available information
- Tests of more realistic models
 - Danger of higher model-dependence
- Model-independent analyses e.g. in HEFT
 Rather weak statements regarding flavour

Extracting weak phases in hadronic decays

UT angles extracted from non-leptonic decays

Hadronic matrix elements (MEs) main theoretical difficulty!

Options:

- Lattice: not (yet) feasible for (most) three-meson MEs
- Other non-perturbative methods: idem, precision
- QCDF/SCET: applicability, power corrections
- Symmetry methods: limited applicability or precision
- New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs Revisit approximations for precision analyses

Here: Improve SU(3) analysis in $B \rightarrow J/\psi M$

 $B
ightarrow J/\psi M$ decays - basics

- $B_d \rightarrow J/\psi K$, $B_s \rightarrow J/\psi \phi$:
 - Amplitude $A = \lambda_{cs}A_c + \lambda_{us}A_u$
 - Clearly dominated by A_c [Bigi/Sanda '81]
 - Very clear experimental signature
 - Subleading terms:
 - Doubly Cabibbo suppressed
 - Penguin suppressed
 - ightarrow Estimates $|\lambda_{us} A_u|/|\lambda_{cs} A_c| \lesssim 10^{-3}$

[Boos et al.'03, Li/Mishima '04, Gronau/Rosner '09]

The golden modes of *B* physics: $|S| = \sin \phi$

However:

- Quantitative calculation still unfeasible [but see Frings+'15]
- Fantastic precision expected at LHC and Belle II
- Subleading contributions should be controlled: Apparent phase $\tilde{\phi} = \phi_{\text{SM}}^{\text{mix}} + \Delta \phi_{\text{NP}}^{\text{mix}} + \Delta \phi_{\text{pen}}$

Flavour SU(3) and its breaking

SU(3) flavour symmetry $(m_u = m_d = m_s)...$

- does not allow to calculate MEs, but relates them (WE theorem)
- provides a model-independent approach
- allows to determine MEs from data
 improves "automatically"!
- includes final state interactions

SU(3) breaking...

- is sizable, $\mathcal{O}(20-30\%)$
- can systematically be included: tensor (octet) ~ m_s
 [Savage'91,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
 ➡ even to arbitrary orders [Grinstein/Lebed'96]

Main questions:

- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

flavour octet

Power counting

SU(3) breaking typically $\mathcal{O}(30\%)$

Several other suppression mechanisms involved:

- CKM structure (λ , but also $R_u \sim 1/3$)
- Topologial suppression: penguins and annihilation
- $1/N_C$ counting

All these effects should be considered!

- **b** Combined power counting in $\delta \sim 30\%$ for all effects
- Neglect/Constrain only multiply suppressed contributions

Yields predictive frameworks with weaker assumptions!

- Uses full set of observables for related decays
- Assumptions can be checked within the analysis

Including $|A_u| \neq 0$ – Penguin Pollution

$$A_u
eq 0 \ \Rightarrow \ S
eq \sin \phi, \ A_{
m CP}^{
m dir}
eq 0$$

Idea: U-spin-related modes constrain A_u [Fleischer'99, Ciuchini et al.'05,'11, Faller/Fleischer/MJ/Mannel'09, ...]

- Increased relative penguin influence in b
 ightarrow d
- Extract $\phi = \phi_{\mathrm{SM}}^{\mathrm{mix}} + \Delta \phi_{\mathrm{NP}}^{\mathrm{mix}}$ and $\Delta \phi_{\mathrm{pen}}$
- Issue: Dependence of $\Delta \phi_{
 m pen}$ on SU(3) breaking

Using full SU(3) analysis: [MJ'12]

ightarrow Determines model-independently SU(3) breaking: $\sim 20\%$

Improved extraction of $\phi_d(o\Delta\phi^{
m mix}_{
m NP})$ and $\Delta\phi_{
m pen}!$

Remaining weaker approximations:

- SU(3) breaking for A_c , only (but to all orders for $P = \pi, K!$)
- EWPs with $\Delta I = 1, 3/2$ neglected (tiny!)
- $A(B_s \rightarrow J/\psi \pi^0) = 0$: testable (challenging)

BR measurements and isospin violation [MJ 1510.03423]

Again: detail due to high precision and small NP Not specific to $B \rightarrow J/\psi K^{(*)}!$

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon o B^+B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0}\equiv \Gamma(\Upsilon o B^+B^-)/\Gamma(\Upsilon o B^0 ar{B}^0)\equiv 1$
 - LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon \to BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.027 \pm 0.037$
- ▶ Isospin asymmetry $B \rightarrow J/\psi K$: $A_I = -0.009 \pm 0.024$

Factorization in $B \rightarrow J/\psi M$

- $B \rightarrow J/\psi M$ formally factorizes for $m_{c,b} \rightarrow \infty...$ [BBNS'00] b ... but corrections are large: $\Lambda_{QCD}/(\alpha_s m_{c,b})$
- $B \rightarrow J/\psi M$ formally factorizes for $N_C \rightarrow \infty...$ [Buras+'86] b... but corrections are large: $A_c \sim C_0 v_0 + C_8 (v_8 - a_8)$ [Frings+'15] Non-factorizable $a_8, v_8 \sim v_0/N_C$, but $C_8 \sim 17C_0$!

 $BR(B \rightarrow J/\psi M)$ remains uncalculable N.B.: No reason to assume $F_{B\rightarrow K}/F_{B\rightarrow \pi}$ for SU(3) breaking

Factorization for P/T: [Frings+'15]

- $\mathcal{A}(B \rightarrow J/\psi M) = \lambda_{cs}A_c + \lambda_{us}A_u$, A_u "penguin pollution"
- ▶ $A_u \sim p + a$, includes penguin and annihilation contributions No annihilation in $B_d \rightarrow J/\psi K$, but in $B_s \rightarrow J/\psi \phi$
- $p = \sum_{j} \langle J/\psi M | \mathcal{O}_{j}^{u} | B \rangle = \sum_{k} \langle J/\psi M | \mathcal{O}_{k}^{c} | B \rangle + \mathcal{O}(\Lambda/m_{J/\psi})$
- Estimating $\langle J/\psi M | \mathcal{O}_k^c | B \rangle$ in $1/N_C$ yields $\Delta \phi_{d,s}|_P \lesssim 1^\circ$

A word on meson mixing

Neutral singlets and octets can mix under QCD Complicates SU(3) analysis

$$B
ightarrow J/\psi P$$
: η, η' not necessary to determine ϕ_d

 $B \rightarrow J/\psi V$: ϕ central mode

Meson mixing has to be dealt with

 $N_C \rightarrow \infty$ and in the SU(3) limit: degenerate $P_{1,8}$ and $V_{1,8}$ Relative size of corrections determines mixing angle Large mixing does not mean breakdown of SU(3)!

 η, η' : large correction to $1/N_C$ from anomaly (singlet) η, η' remain approximate SU(3) eigenstates ϕ, ω : $1/N_C$ effects small (OZI) \rightarrow SU(3) breaking dominant \bullet eigenstates according to strange content, large mixing

> Only the octet part can be controlled by K^* and ρ ! Data for ω necessary to control singlet in SU(3)

Annihilation contributions in $B \rightarrow J/\psi M$

Annihilation is important!

- Suppression unclear for heavy final states
 - $ightarrow \sim 20\%$ in $A_c(B
 ightarrow DD)$ [MJ/Schacht'15]
- Determines singlet contributions in $B_s
 ightarrow J/\psi \phi$
- Affects extraction of $\eta \eta'$ mixing angle from $B_{d,s} o J/\psi \eta^{(\prime)}$
- Its neglect correlates e.g. A_u in $B^-\to J/\psi\pi^-$ and $B^0\to J/\psi K^0{}^{\prime}$ directly
 - Overly "precise" predictions for CP asymmetries
- In $B \rightarrow J/\psi M$ three annihilation contributions:
 - Annihilation in A_c, taken into account where appropriate
 - Two annihilation contributions in A_u , $a_2 \sim a_1/N_C$
 - → $a_2 \ll 1 \rightarrow BR(B_s \rightarrow J/\psi\pi^0, \rho^0) \approx 0$, $A_I(B \rightarrow J/\psi K) \approx 0$ $BR(B_s \rightarrow J/\psi\rho) \leq 3.6 \times 10^{-6}$ (90%CL)
 - No improvement from inclusion (unlike [Ligeti/Robinson'15])
 - Only leading contribution included later

PRELIMINARY results for $B \rightarrow J/\psi P$ [Beaujean/MJ/Knegjens('15)] Fit to $B_{d.u.s} \rightarrow J/\psi(K, \pi)$ data (including correlations)

- PDG uncertainties applied
- Annihilation included
- SU(3) breaking \leq 55% allowed
- $P/T, A/T \le (100, 55, 16, 0)\%$
- Excellent fit $(\chi^2/\mathrm{dof} \leq 1)$
- SU(3) breaking \lesssim 30%
- Pen. + Ann. consistent with 0
- Issues: $R_{\pi K}$, $S_{
 m CP}(B
 ightarrow J/\psi \pi^0)$

Conclusions

- Smallness of NP poses new challenges to CPV interpretation
- SU(3) with breaking enables model-independent analyses
- Combined power counting of small effects necessary
- High precision → Control penguins and annihilation
 Possible for φ_d by B → J/ψP |Δφ| ≤ 0.6° (95% CL)
- Interplay with SU(3) breaking
 careful interpretation of BR data necessary
- Results will improve with coming data, penguins tamed
- QCD-mixing of mesons complicates $B \rightarrow J/\psi V$ analysis • Nevertheless possible, work in progress

 $b \rightarrow c \bar{c} s$ modes remain "golden"!

	1.5	
Observable	Value	Ref./Comments
$\frac{1}{c}$ BR $(B^- \rightarrow J/\psi K^-)$	$(10.27\pm0.31) imes10^{-4}$	
$rac{1}{c} \mathrm{BR}(B^- ightarrow J/\psi \pi^-)$	$(0.38\pm 0.07) imes 10^{-4}$	
$\frac{\text{BR}(B^- \to J/\psi\pi^-)}{\text{BR}(B^- \to J/\psiK^-)}$	$\textbf{0.040} \pm \textbf{0.004}$	scaling factor 3.2
	0.0386 ± 0.0013	Excluding BaBar
	0.052 ± 0.004	Excluding LHCb
$rac{1}{c_0} \mathrm{BR}(ar{B}^0 ightarrow J/\psi ar{K}^0)$	$(8.73 \pm 0.32) imes 10^{-4}$	U
$r \frac{BR(B^- \to J/\psi K^-)}{BR(\bar{B}^0 \to J/\psi \bar{K}^0)}$	1.090 ± 0.045	correlations neglected
$\frac{1}{c_0} \operatorname{BR}(\bar{B}^0 \to J/\psi \pi^0)$	$(0.176\pm 0.016) imes 10^{-4}$	scaling factor 1.1
$\frac{f_s}{f_d} \frac{\text{BR}(\bar{B}_s \to J/\psi K_S)}{\text{BR}(\bar{B}^0 \to J/\psi K_S)}$	0.0112 ± 0.0006	$f_s/f_d=f_s/f_d _{\rm LHCb}$
$\frac{\mathrm{BR}(\bar{B}_s \to J/\psi K_S)}{\mathrm{BR}(\bar{B}^0 \to J/\psi K_S)}$	$\textbf{0.038} \pm \textbf{0.009}$	uses $f_s/f_d = f_s/f_d _{\mathrm{Tev}}$
$\frac{1}{2} \operatorname{BR}(\bar{B}^0 \to J/\psi \eta)$	$0.123 \pm 0.019 \times 10^{-4}$	
$\ddot{BR}(\bar{B}_s \rightarrow J/\psi\eta)$	$(5.1\pm1.1) imes10^{-4}$	
$R_{s} = rac{\mathrm{BR}(B_{s} \rightarrow J/\psi \eta')}{\mathrm{BR}(\bar{B}_{s} \rightarrow J/\psi \eta)}$	$\textbf{0.73} \pm \textbf{0.14}$	$ ho(BR,R_s)=-23\%$
Rs	0.902 ± 0.084	$ ho({\it R_s},{\it R})=1\%$
$R = rac{{ m BR}(ar{B}^{ m 0} ightarrow J/\psi \eta')}{{ m BR}(ar{B}^{ m 0} ightarrow J/\psi \eta)}$	1.11 ± 0.48	$ ho({\sf R},{\sf R}_\eta)=-73\%$
$rac{f_d}{f_s} R_\eta = rac{f_d}{f_s} rac{\mathrm{BR}(\bar{B}^0 o J/\psi\eta)}{\mathrm{BR}(\bar{B}_s o J/\psi\eta)}$	0.072 ± 0.024	$ ho({\it R}_\eta,{\it R}_s)=9\%$

Input Values for $B \rightarrow J/\psi P$ Decays: BRs

Input Values for $B \rightarrow J/\psi P$ Decays: CP Asymmetries

Observable	Value	Ref./Comments
$\mathcal{A}_{\rm CP}(B^- o J/\psi K^-)$	0.003 ± 0.006	
${\cal A}_{ m CP}(B^- ightarrow J/\psi\pi^-)$	0.001 ± 0.028	
$-\eta_{\rm CP} S_{\rm CP} (\bar{B}^0 ightarrow J/\psi K_{S,L})$	0.687 ± 0.019	
$\mathcal{A}_{\mathrm{CP}}(ar{B}^0 o J/\psi K_{\mathcal{S},L})$	0.016 ± 0.017	$ ho(\mathcal{S}_{ ext{CP}},\mathcal{A}_{ ext{CP}})=-15\%$
${\cal S}_{ m CP}(ar B^0 o J/\psi \pi^0)$	-0.94 ± 0.29	
	-0.65 ± 0.22	Belle only
${\cal A}_{ m CP}(ar B^0 o J/\psi \pi^0)$	0.13 ± 0.13	
	0.08 ± 0.17	Belle only
$\mathcal{S}_{ ext{CP}}(ar{B}_{s} ightarrow J/\psi K_{S})$	-0.08 ± 0.41	
${\cal A}_{ m CP}(ar B_s o J/\psi K_S)$	$\textbf{0.28} \pm \textbf{0.42}$	
${\cal A}_{\Delta\Gamma}(ar B_s o J/\psi K_S)$	$0.49^{+0.77}_{-0.65}\pm 0.06$	
$\left f_{s}/f_{d} \right _{\rm LHCb}$	0.259 ± 0.015	
Уs	0.0611 ± 0.0037	
$r = f_{+-}/f_{00}$	1.027 ± 0.037	

Data in both tables: PDG, HFAG, LHCb, Belle, BaBar

Reparametrization invariance and NP sensitivity

$$\mathcal{A} = \mathcal{N}(1 + r \, e^{i \phi_s} e^{i \, \phi_w}) o ilde{\mathcal{N}}(1 + ilde{r} \, e^{i ilde{\phi}_s} e^{i ilde{\phi}_w})$$

Reparametrization invariance:

[London et al.'99,Botella et al.'05,Feldmann/MJ/Mannel'08]

Transformation changes weak phase, but not form of amplitude

Sensitivity to (subleading) weak phase lost (presence visible)

- $\phi_w = \gamma$ in given analyses
- Usually broken by including symmetry partners

▶ Proposals to extract γ in $B \rightarrow J/\psi P$ or $B \rightarrow DD$

 However: partially restored when including SU(3) breaking! [MJ/Schacht'14]

 \blacktriangleright Reason for large range for γ observed in [Gronau et al.'08]

- Extracted phase fully dependent on SU(3) treatment
- **•** NP phases in \mathcal{A} not directly visible
- NP tests remain possible
- Addition of new terms, e.g. $A_c^{\Delta l=1}$ additional option