Multi-body B decays

Bhubanjyoti Bhattacharya

Université de Montréal

November 5, 2015

LHCb Implications Workshop, 3 - 5 Nov, 2015 CERN

Bhubanjyoti Bhattacharya (UdeM)

Multi-body B decays

B decays physics goals

 $\begin{array}{l} \rightarrow \ \gamma(\phi_3) : B \rightarrow DK, \pi \\ (\text{GLW, ADS, GGSZ methods}) \\ b \rightarrow c \bar{u}s \ (\text{tree level}) \end{array}$

$$\begin{array}{rl} & \rightarrow & \alpha(\phi_2): \ B \rightarrow \pi\pi, \ \rho\pi, \ \rho\rho \\ & b \rightarrow u\bar{u}d \ \ \mbox{(loop sensitive)} \end{array}$$

$$\begin{array}{rl} \rightarrow & \beta(\phi_1): \ B \rightarrow K \ + \ {\rm charmonium} \\ & b \rightarrow c \bar{c} d \ \ ({\rm loop \ sensitive}) \end{array}$$

- Amazing work by by the experimental community!
- Direct measurements (CKMFitter) : $\alpha(\phi_2) = 87.6^{+3.5}_{-3.3}$, $\beta(\phi_2) = 21.85^{+0.68}_{-0.67}$
- Direct γ measurement is statistics limited : $\gamma(\phi_3) = 73.2^{+6.3}_{-7.0}$

However, LHCb program to get $\delta\gamma$ to less than 1° (long run)

Bhubanjyoti Bhattacharya (UdeM)

γ from three-body decays

- 3-body final state under SU(3) : $B \rightarrow \kappa_{\pi\pi}, \kappa \overline{\kappa} \kappa$
 - ightarrow 6 final state symmetries : permutations of 3 particles
- Fully-symmetric state (Rey-Le Lorier, London, 1109.0881)
 - \rightarrow $\;$ More observables than unknowns $\;$ $\Rightarrow \;$ γ can be extracted
 - \rightarrow BB, Imbeault, London, 1303.0846

- Group theory analysis : I-spin, U-spin, SU(3) relations
 - \rightarrow BB, Gronau, Imbeault, London, Rosner, 1402.2909

Bhubanjyoti Bhattacharya (UdeM)

Multi-body B decays

Three-body decays : Dalitz plots

• Three-body final state : $|P_1(p_1)P_2(p_2)P_3(p_3)\rangle \ s_{ij} = (p_i + p_j)^2$

 \rightarrow Momentum dependent. One relation $\textit{s}_{12} + \textit{s}_{23} + \textit{s}_{13} = \mathrm{constant}$

Features of a Dalitz plot:

- Independent measurements at different points may be possible
- Same SM weak phase (such as γ);
 Hadronic parameters are local
- Consistency checks : Flavor symmetries (SU(3), U-spin etc) provide amplitude relationships

Three-body decays : Dalitz plots

- General three-body amplitude : $\mathcal{A} = a + e^{i\phi}b$
 - \rightarrow 2 parts separated by a relative weak phase ϕ (ignore overall phase)
 - $\rightarrow a \equiv \textit{a}(\textit{p}_1,\textit{p}_2,\textit{p}_3) \ , \ \ \textit{b} \equiv \textit{b}(\textit{p}_1,\textit{p}_2,\textit{p}_3) \ : \ \ |\textit{a}|,|\textit{b}|, \, \text{relative strong phase}$

 \rightarrow 4 unknowns at any general point on a Dalitz plot

- Only 2 (local/momentum dependent) observables
 - \rightarrow CP averaged branching ratio $\propto |\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2$

 \rightarrow direct-CP asymmetry $\propto |\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2$

- The general three-body state is NOT a CP eigenstate!
 - \rightarrow CP conjugate of ${\it K_s}(p_1)\pi^+(p_2)\pi^-(p_3)$ is ${\it K_s}(p_1)\pi^-(p_2)\pi^+(p_3)$

 \rightarrow Indirect/mixing-induced CP asymmetries not obvious

Bottom Line : Not enough observables to solve for $\boldsymbol{\gamma}$

Bhubanjyoti Bhattacharya (UdeM)

イロト イポト イヨト イヨト 二日

Can U-spin symmetry help?

- More observables in U-spin pairs : $B^0_s o K_S \pi^+ \pi^-, B^0_d o K_S K^+ K^-$
- Amplitudes have the same structure as before : $\mathcal{A} = a + e^{i\phi}b$
 - $\begin{array}{l} \rightarrow \ \mathcal{A}_{d} = V_{ub}^{*}V_{ud}T_{d} + V_{cb}^{*}V_{cd}P_{d} \\ \rightarrow \ \overline{\mathcal{A}}_{d} = V_{ub}^{*}V_{ud}\overline{T}_{d} + V_{cb}^{*}V_{cd}\overline{P}_{d} \\ \end{array} \begin{array}{l} \mathcal{A}_{s} = V_{ub}^{*}V_{us}T_{s} + V_{cb}^{*}V_{cs}P_{s} \\ \overline{\mathcal{A}}_{s} = V_{ub}^{*}V_{us}\overline{T}_{s} + V_{cb}^{*}V_{cs}\overline{P}_{s} \end{array}$
- T_d and \overline{T}_d come from two regions of the same Dalitz plot $\rightarrow |p_1 p_2 p_3\rangle$ and $|p_1 p_3 p_2\rangle$ represent 2 regions of the same Dalitz plot
- U-spin relates hadronic parameters : $T_d = T_s$,... \rightarrow U-spin relationship : $|A_d|^2 - |\overline{A}_d|^2 = |\overline{A}_s|^2 - |A_s|^2$ (consistency check)
- $\bullet~$ Solve this problem using indirect-CP asymmetry : $\mathrm{Im}\left[(q/p)A^*\overline{A}\right]$
 - \rightarrow 2-body strategy : Fleischer, hep-ph/9903456
 - \rightarrow Independent measurement gives $B_d \overline{B}_d$ mixing phase

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

A_{CP} in three-body decays

• Local (momentun dependent) branching fraction and CP asymmetry:

$$\Gamma(t) = \frac{\Gamma(B^0 \to f) + \Gamma(\overline{B}^0 \to f)}{2}$$
$$A_{CP}(t) = \frac{\Gamma(B^0 \to f) - \Gamma(\overline{B}^0 \to f)}{\Gamma(B^0 \to f) + \Gamma(\overline{B}^0 \to f)}$$

Note that $|f
angle
eq \left|\overline{f}
ight
angle$

 A_{CP} not a true "CP asymmetry" Used for simplification

Time-dependent Dalitz analysis : extract coefficients

 $\begin{array}{ll} \cos(\Delta mt) & \propto \int\limits_{\mathrm{bin}} |\mathcal{A}|^2 - |\tilde{\mathcal{A}}|^2 \\ \sin(\Delta mt) & \propto \int\limits_{\mathrm{bin}} \mathrm{Im} \left[(\mathrm{q/p}) \mathcal{A}^* \tilde{\mathcal{A}} \right] \\ \sinh(\Delta \Gamma t/2) & \propto \int\limits_{\mathrm{bin}} \mathrm{Re} \left[(\mathrm{q/p}) \mathcal{A}^* \tilde{\mathcal{A}} \right] \\ \cosh(\Delta \Gamma t/2) & \propto \int\limits_{\mathrm{bin}} |\mathcal{A}|^2 + |\tilde{\mathcal{A}}|^2 \end{array}$

 $egin{array}{rcl} &
ightarrow \, {\cal A} \; = \; \left< f | B^0 \right> \; , \;\; { ilde {\cal A}} \; = \; \left< { ilde {f}} | B^0 \right> \ &
ightarrow \, {\cal A} \; {
m has the form} \; a + e^{i\phi} b \end{array}$

 $\rightarrow\,$ Also for U-spin pair

Now we have enough observables to extract weak phase information

Further details in : BB, D. London, 1503.00737

Bhubanjyoti Bhattacharya (UdeM)

Multi-body B decays

Source of uncertainty

• In order to perform a fit we may use redefinitions:

$$\int_{\mathrm{bin}} |\mathcal{A}|^2 \equiv |\mathcal{A}'|^2 , \quad \int_{\mathrm{bin}} |\tilde{\mathcal{A}}|^2 \equiv |\tilde{\mathcal{A}}'|^2 , \quad \int_{\mathrm{bin}} \mathrm{Im}\left[(q/p)\mathcal{A}^*\tilde{\mathcal{A}}\right] \equiv ?$$

- Use approximation : $\int_{\text{bin}} \text{Im}\left[(q/p)\mathcal{A}^*\tilde{\mathcal{A}}\right] \approx \text{Im}\left[(q/p)\mathcal{A}'^*\tilde{\mathcal{A}}'\right]$
 - $\rightarrow~$ Relation is exact for a point-sized bin
 - \rightarrow Approximation gets worse as bin size increases
- Given data set \Rightarrow Larger statistical error for smaller bins
- Optimum bin size required to strike a balance
 - ightarrow Vary bin size for fits to check its effect on physical parameters

Bhubanjyoti Bhattacharya (UdeM)

Flavor-SU(3) symmetry

- Symmetry under interchange of *u*, *d*, *s* quarks
- 8 identical pseudoscalars under flavor SU(3) (8 generators of SU(3))
 - \rightarrow 3 Pions (π^{\pm},π^{0}) , 4 Kaons $(K^{\pm},K^{0},\overline{K}^{0})$ (+ a combination of η,η')
 - $\rightarrow~|P_1P_2P_3\rangle$ has three identical particles under SU(3)
- The fully-symmetric state is simple : amplitude symmetrized in momentum $\rightarrow |\kappa^{0}(p_{1})\pi^{+}(p_{2})\pi^{-}(p_{3})\rangle_{FS} = |\kappa^{0}(p_{1})\pi^{+}(p_{3})\pi^{-}(p_{2})\rangle_{FS}$
 - $\rightarrow~$ Mixing-induced CP asymmetry is simple : $\propto~{\rm Im}\left[(q/p){\cal A}^*\overline{\cal A}\right]$
- Complication : amplitude analysis is required
 - ightarrow Isobar method : $\mathcal{A}(s_{12},s_{13})\propto\sum_i c_j e^{i\phi_j} F^j_{\mathrm{BW}}(s_{12},s_{13})$
 - $\rightarrow~$ Superposition of non-resonant and resonant (quasi-two-body) modes

イロト イポト イヨト イヨト

Flavor-SU(3) relations

- 9 independent flavor-SU(3) matrix elements describe all $B \rightarrow 3P$ amplitudes
 - \rightarrow BB, Gronau, Imbeault, London, Rosner, 1402.2909
- 16 b
 ightarrow s decay channels and 16 b
 ightarrow d decay channels
 - $\rightarrow~$ Amplitudes of these decays depend on 9 matrix elements
 - $\Rightarrow~$ Not all amplitudes are independent : there are relations
- Isospin symmetry alone gives 6 relations in $b \rightarrow s$ (momentum dependent)

$$\rightarrow \mathcal{A}(B^+ \rightarrow K^0 \pi^+ \pi^0)_{\rm FS} = - \mathcal{A}(B^0_d \rightarrow K^+ \pi^0 \pi^-)_{\rm FS}$$

$$\rightarrow \sqrt{2}\mathcal{A}(B^0_s \rightarrow 3\pi^0)_{\rm FS} = - \sqrt{3}\mathcal{A}(B^0_s \rightarrow \pi^0 \pi^+ \pi^-)_{\rm FS}$$
 (4 more)

• Full SU(3) gives a 7th relation in $b \rightarrow s$ decays:

$$ightarrow \sqrt{2} \mathcal{A}(B^+
ightarrow K^+ \pi^+ \pi^-)_{
m FS} \; = \; \mathcal{A}(B^+
ightarrow K^+ K^+ K^-)_{
m FS}$$

 $\rightarrow \ \mathsf{U} \ \mathsf{spin} + \mathsf{FS} \ \mathsf{version} \ \mathsf{of} : \ \mathcal{A}(\mathsf{K}_1^+ \pi_2^+ \pi^-) + \mathcal{A}(\mathsf{K}_2^+ \pi_1^+ \pi^-) \ = \ \mathcal{A}(\mathsf{K}^+ \mathsf{K}^+ \mathsf{K}^-)$

Gronau, Rosner, hep-ph/0304178

Using flavor-SU(3) relations

- Relations can be checked using amplitude analysis
- Expect larger deviations from SU(3) in some regions
 - $\rightarrow\,$ Near narrow resonances : resonance masses break flavor symmetries
 - ightarrow Near kinematic boundaries since $m_K~
 eq~m_\pi$
- No contributions from vector resonances to FS states
 - \rightarrow Smaller contribution to SU(3) breaking in FS states
- Integrate over the kinematically-allowed regions
 - \rightarrow Expect smaller deviations from SU(3)
 - $\rightarrow~$ Possible cancellation of SU(3) breaking in the avergae
- Expect no (or tiny) deviations from Isospin relations
 - $\rightarrow\,$ Deviations most likely show loopholes in amplitude analysis

A B A A B A

Using Flavor SU(3) in B^+ decays

- Local asymmetries observed by LHCb in $B^+ o \pi^+ \pi^+ \pi^-$
 - $\rightarrow~{\rm Region}:~s_{\pi^+\pi^-{\rm low}}~<~0.4~{\rm GeV^2}$, $~s_{\pi^+\pi^-{\rm high}}~>~15~{\rm GeV^2}$
 - \rightarrow Observed asymmetry : $A_{CP}~\sim~(60\pm10)\%$ $\,$ Aaij et al.,1310.4740 $\,$
- ρ (vector) & f^0 (scalar) channels interfere : BB, Gronau, Rosner, 1306.2625 $\rightarrow \mathcal{A}_{B^+ \rightarrow \pi^+ \pi^-}(s_{\text{low}}, s_{\text{high}}) = \mathcal{A}_{\rho} F_{\rho}(s_{\text{low}}, s_{\text{high}}) + \mathcal{A}_{f^0} F_{f^0}(s_{\text{low}}, s_{\text{high}})$ $\rightarrow \mathcal{A}_{f^0}, \mathcal{A}_{\rho}$ from Flavor-SU(3) fits to $B \rightarrow PS, PV$ decays

→ Large local CP asymmetries can be due to interference between different isobar channels → Local effects can be smaller in FS state → Test for U-spin FS relation (local and integrated) $\mathcal{A}(B^+ \to \pi^+\pi^+\pi^-)_{\rm FS} = \sqrt{2}\mathcal{A}(B^+ \to \pi^+\mathcal{K}^+\mathcal{K}^-)_{\rm FS}$

SU(3) symmetry

Three-body decay route to new physics

- γ extracted by applying SU(3) to fully symmetric state
 - \rightarrow Full Analysis : BB, Imbeault, London, 1303.0846

- Key : γ extraction by applying SU(3) to other symmetry states
 - $\rightarrow~$ Break discrete ambiguity : more information from other states
- Also key : estimate systematic uncertainties in γ extraction
- $\bullet~$ Interesting situation : γ widely different from SM value
 - \rightarrow Significant SU(3) breaking ?
 - \rightarrow NP in three-body *B* decays; $K\pi\pi KKK$ puzzle

Summary

- Three-body B decays may provide new information
- γ from three-body *B* decays is loop sensitive
- Flavor symmetry tests → U-spin, SU(3) : Compare flavor symmetry related decays
- U-spin related three-body decay pairs : Time-dependent Dalitz analysis for γ
- Amplitude analysis \rightarrow SU(3) related final states
- Future theory studies of additional symmetry states

A (10) N (10)

Three-body $b \rightarrow s$: more SU(3) relations

4 additional relations (isospin symmetry) :

$$\begin{split} \sqrt{2}\mathcal{A}(B^+ \to K^0\pi^+\pi^0)_{\rm FS} &= \mathcal{A}(B^0_d \to K^0\pi^+\pi^-)_{\rm FS} + \sqrt{2}\mathcal{A}(B^0_d \to K^0\pi^0\pi^0)_{\rm FS} \\ \sqrt{2}\mathcal{A}(B^0_d \to K^+\pi^0\pi^-)_{\rm FS} &= \mathcal{A}(B^+ \to K^+\pi^+\pi^-)_{\rm FS} + \sqrt{2}\mathcal{A}(B^0_d \to K^0\pi^0\pi^0)_{\rm FS} \\ \mathcal{A}(B^+ \to K^+K^+K^-)_{\rm FS} + \sqrt{2}\mathcal{A}(B^+ \to K^+K^0\overline{K}^0)_{\rm FS} \\ &= \sqrt{2}\mathcal{A}(B^0_d \to K^0K^+K^-)_{\rm FS} + \mathcal{A}(B^0_d \to K^0K^0\overline{K}^0)_{\rm FS} \\ \mathcal{A}(B^0_s \to \pi^0K^+K^-)_{\rm FS} + \sqrt{2}\mathcal{A}(B^0_s \to \pi^0K^0\overline{K}^0)_{\rm FS} \\ &= -\sqrt{2}\mathcal{A}(B^0_s \to \pi^-K^+\overline{K}^0)_{\rm FS} - \mathcal{A}(B^0_s \to \pi^+K^-K^0)_{\rm FS} \end{split}$$

Bhubanjyoti Bhattacharya (UdeM)

3

γ from 3-body using flavor SU(3)

$$\begin{split} & \mathsf{Fully-symmetric amplitudes}:\\ & 2\mathcal{A}(B^0_d \to K^+\pi^0\pi^-)_{\mathrm{FS}} = b \ e^{i\gamma} - \kappa \ c\\ & \sqrt{2}\mathcal{A}(B^0_d \to K^0\pi^+\pi^-)_{\mathrm{FS}} = -(d + \tilde{P}'_{uc})e^{i\gamma} - a + \kappa \ d\\ & \sqrt{2}\mathcal{A}(B^+ \to K^+\pi^+\pi^-)_{\mathrm{FS}} = -(c + \tilde{P}'_{uc})e^{i\gamma} - a + \kappa \ b\\ & \mathcal{A}(B^0_d \to K^0K^0\overline{K}^0)_{\mathrm{FS}} = \alpha_{\mathrm{SU}(3)}(\tilde{P}'_{uc} \ e^{i\gamma} + a)\\ & \mathcal{A}(B^0_d \to K^+K^0K^-)_{\mathrm{FS}} = \alpha_{\mathrm{SU}(3)}\mathcal{A}(B^+ \to K^+\pi^+\pi^-)_{\mathrm{FS}} \end{split}$$

- Hadronic parameters : $a, b, c, d, \alpha_{SU(3)}, \tilde{P}'_{uc}$; Theory input : κ
- $\tilde{P}'_{uc} = 0$ for no CP-asymmetry in $3K_S$ channel
- Observables : $X = |\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2$, $Y = |\mathcal{A}|^2 |\overline{\mathcal{A}}|^2$, $Z = \text{Im}[\mathcal{A}^*\overline{\mathcal{A}}]$
- Simplest fit : $\alpha_{SU(3)} = 1$; 9 observables \Rightarrow 7 hadronic unknowns + γ \rightarrow Full Analysis : BB, Imbeault, London, 1303.0846

Bhubanjyoti Bhattacharya (UdeM)

Multi-body B decays

(日) (周) (日) (日) (日) (0) (0)

" $B ightarrow \pi K$ puzzle" and γ

- Flavor SU(3) relates: $B^+ \rightarrow \pi^+ K^0$, $\pi^0 K^+$; $B^0_d \rightarrow \pi^- K^+$, $\pi^0 K^0$
- 9 measurements : 4 branching ratios + 4 direct CP asymmetries
 + 1 indirect CP asymmetry
- 9 unknowns : 4 magnitudes + 3 relative strong phases + β + γ
- SM can explain data but still room for NP
 - ightarrow Best fit value for $\gamma = \left(35.9 \pm 7.7
 ight)^\circ$: large deviation from $\gamma_{
 m tree}$
 - \rightarrow Baek, Chiang, London, 0903.3086
- Problematic in (certain) NP models as well!
 - \rightarrow Imbeault, Baek, London, 0802.1175
 - \rightarrow Endo, Yoshinaga, 1206.0067

Bhubanjyoti Bhattacharya (UdeM)