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|Vub| is important
• Measuring |Vub| is useful 

because: 

• It’s the SM benchmark for 
sin(2β). 

• Predicting  

• Tests of non-perturbative 
QCD.
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B(B+ ! ⌧⌫)

• Processes involving Vub might also be sensitive to NP 
themselves.



Measuring |Vub|
• |Vub| is measured using (semi-)leptonic decays.
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How to measure |Vub| (exclusively)
• Semi-leptonic decays can be used to make precise 

measurements of  |Vub| 

• Factorise electroweak and strong parts of the decay:
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Having a ground state hadron, 
such as a pion, is useful to 

control theoretical uncertainties.

QCD part encompassed by form-
factor.

Measure rate exclusive 
decay, such as                 rely 

on LQCD (LCSR).
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Measure all semi-leptonic |Vub| 
decays                 rely on OPE 

+ quark-hadron duality.
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Measure purely leptonic 
decay                 rely on 
LQCD, but uncertainty is 

small.
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Situation as of last PDG version
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This has been a problem for a while
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• Leptonic measurement not precise enough to tell which 
one is which, but tends to prefer inclusive.



Semi-leptonics at LHCb

5

Best signature fully charged final state, apart from a single 
neutrino. 
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The decay          
• The decay                   is the 

baryonic version of                . 

• Cleaner at LHCb as protons 
are rarer than kaons/pions. 

• Λb baryons not produced at 
BaBar or Belle experiments 
but at the LHC produced half 
as often as B mesons.
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Figure 4: Dependence of f
⇤

0
b
/f

d

on the (a) p
T

and (b) ⌘ of the beauty hadron. To obtain this

figure, the ratio of e�ciency-corrected event yields is scaled to the absolute value of f
⇤

0
b
/f

d

from

the semileptonic analysis [7]. The error bars include the statistical and systematic uncertainties
associated with the hadronic measurement. The dashed red lines indicate the uncertainty on the
scale of f

⇤

0
b
/f

d

from the semileptonic analysis.

The ⌘ dependence is described by the linear function

f
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d

(⌘) = a

0 + b

0 ⇥ (⌘ � ⌘) , (6)

with

a

0 = 0.387± 0.013 +0.028

�0.030

,

b
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,

where the first uncertainty is the combined statistical and the second is the combined
systematic from the hadronic and semileptonic measurements. The dependences of f

⇤

0
b
/f

d

on the p

T

and ⌘ of the b hadron are shown in Fig. 4.
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Analysis strategy
• Normalise signal yield to Vcb decay,                   . 

• Cancel many systematic uncertainties, including the 
production rate of Λb baryons. 

• Calculate the branching fraction ratio at high q2, only use 
data in the region with lattice points.
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Plots from W. Detmold, C. Lehner, S. Meinel, arXiv:1503.01421
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Results

• Confirms tension inclusive/exclusive tension.
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Differential measurement?
• Should we do a differential measurement of                   ? 

• Resolution is pretty wide compared to B-factories. 

• Do not rely heavily on z-expansion as we are not 
extrapolating.
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Beyond           . 
• There are several decays to consider. 

• Golden modes:                ,   

• Excited modes:               ,                   ,                 …
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• Adding extra tracks to 
final state reduces 
background and 
improves signal 
resolution.



• The decay                          has the potential to 
produce the most precise result there is.
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plots from RBC/UKQCD group, arXiv:1501.05373
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FIG. 7. Visualization of the error budgets for the B ! ⇡`⌫ (upper plots) and Bs ! K`⌫ (lower plots) form factors. Error
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these q2 values are given in Table VI.

strange sea-quark mass, so we cannot directly compute
the strange sea-quark mass dependence of fk and f?. We
therefore study the light sea-quark mass dependence and
use it to bound the strange sea-quark mass dependence.
We cannot resolve any light sea-quark mass dependence
within statistical uncertainties, and expect the strange
sea-quark mass dependence to be even smaller. Thus we
take the error due to mistuning the strange sea-quark
mass to be negligible.
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• The same lattice data produces twice as good 
precision for                         w.r.t. B0

s ! K+µ�⌫ B ! ⇡`⌫



vsB0
s ! K+µ�⌫ ⇤0

b ! pµ⌫

Decay ⇤

0
b B0

s

theory error 5% 3%

prod frac 20% 10%
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�4

B(Xc) error
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+
c ⇤

+
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•                          is clearly more difficult than                     
but has better ultimate precision. 

• We are working hard on this, stay tuned for next year. 
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|Vub| with Bc mesons

B+
c ! J/ µ+⌫X

B+
c ! D0µ+⌫X

Vub
ū

c

µ+

νµ

c

b̄

B+
c D(∗)0

• We have around 10,000                             
candidates from LHCb-PAPER-2013-063. 

• Expect about 100                           candidates.
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• Bc mesons can also decay via Vub. 

• Signature is                            and B+
c ! D0µ+⌫X

B+
c ! D+µ+⌫X

• Could we get theoretical control to determine |Vub|/|Vcb| ratio?



Leptonic decays
• Purely leptonic Vub decays are difficult, if not impossible 

to find at LHCb. 

•                  is clearly a waste of time. 

•                 better, however helicity suppression makes the 
SM BF too rare to be useful for |Vub|. 

• Radiate off initial leg to remove helicity suppression. 
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B

+ ! µ+µ�µ+⌫µ EvtGen

EvtGen

Until now, MC sample for this decay has been generated using
phase space decay model. i.e in EvtGen B

+ ! µ+µ�µ+⌫µ decays
using PHSP.

However, one can use different decay models to generate more
realistic MC sample.

5 / 9

B+ ! ⌧⌫

B+ ! µ⌫

• Analysis on-going. We 
plan to remove events with 
q2 above 1GeV/c2  - is this 
ok?



Vub τ decays
• If there is NP in Vcb τ decays, what about Vub? 

• Less SM background.
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• Excited states can be used 
here.
R(N⇤) =

B(⇤b ! N⇤⌧⌫)

B(⇤b ! N⇤µ⌫

R(pp̄) =
B(B ! pp̄⌧⌫)

B(B ! pp̄µ⌫

What kind of limits would be interesting, given constraints on  
from Belle (arXiv:1509.06521)?B(B ! ⇡⌧⌫)

State of semitauonic B decays
• Combining measurements from 

LHCb, BaBar, Belle, HFAG finds a p-
value of 1.1 × 10−4, for the present 
SM predictions

• More input is still needed, and LHCb
is the only game in town now

• Our proof-of-concept need to be 
expanded as much as possible to 
exploit the data

• A simultaneous measurement of 
𝑅 𝐷 and 𝑅(𝐷∗) would maximize our 
contribution

• Feed down of 𝐵− → 𝐷∗0ℓ𝜈 looks like 
ugly BG at first, but actually gives us 
more statistics for 𝑅 𝐷∗ !



Other ideas
• Kaon veto applied in inclusive measurement to suppress 

Vcb background. 

• Can the decays                       and                     help 
control the efficiency of this (I. Bigi, arXiv:1507.01842)?  

• Another distinctive signature is                 . Could we 
learn anything about |Vub| or the hadronic structure? 

• What about angular analyses of e.g.                , is there 
room left for significant deviations from the SM 
predictions?
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B ! KK⇡µ⌫ B ! KKµ⌫
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Summary

• LHCb has measured |Vub| using                 decays. 

• The |Vub| field is relatively new to LHCb, but is 
expanding rapidly. 

• We will obviously try to do everything we can. 
However, input to what is particularly interesting or 
new ideas are very welcome.
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RH currents
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B—>πlν
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Figure 27. Left: comparison of vector form factor f
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(z) from z expansion fits to: only the lattice-
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Right: the similar plot for the partial branching fraction dB/dq2. The fits including lattice results

use Nz = 4, while the experiment-only fit uses Nz = 3. The experimental data points and the

experiment-only z-fit result in the left plot have been converted from
�
�B/�q2

�
1/2 to f

+

using

|Vub| from the combined fit. The lattice-only fit result(cyan band) and the combined-fit result (red

band) in the right plot is converted from the form factor with the same |Vub|.

VI. RESULTS AND CONCLUSION

Our final result for |Vub|, obtained from our preferred z fit combining our lattice-QCD cal-

culation of the B ! ⇡`⌫ form factor with experimental measurements of the corresponding

decay rate, is

|Vub| = (3.72± 0.16)⇥ 10�3. (6.1)

The error includes all experimental and lattice-QCD uncertainties. The contribution from

lattice QCD to the total error is now comparable to that from experiment. The error reported

here, following HFAG [6], does not apply the PDG prescription for discrepant data; that

prescription [66] would scale the error by a factor of
p

�2/dof = 1.2. As can be seen from

Table XVII and Fig. 26, the low fit quality is due to the tension between the BaBar11 data

set and the others. An inspection of all the experimental data in Fig. 27 shows that the

point near z = �0.1 in the BaBar11 data set is lower than the others and a bit more precise

than one might have anticipated, but does not suggest that this or any of the data sets have

any systematic problems.
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