|V_{ub}| at LHCb: measurements and future prospects

Patrick Owen, on behalf of the LHCb collaboration

Implications workshop 5 04/11/15

Imperial College London

|V_{ub}| is important

- Measuring |V_{ub}| is useful because:
 - It's the SM benchmark for sin(2β).
 - Predicting $\mathcal{B}(B^+ \to \tau \nu)$
 - Tests of non-perturbative QCD.

Processes involving V_{ub} might also be sensitive to NP themselves.

1 DE generally withten in terms of two torm factors

 $(q^2) [e^2 + p']^{\mu} \underline{M}_{\mu}$ $p)\rangle$ [is measured Hing (30m)] = 0.02JMeasure rate exclusive (1.52 $-q^{\mu}$. $M_R^2 \bar{l} - m_\pi^2$ decay, such as $B \to \pi \ell \nu$ rely on LQC $\left(1152R\right)$. ied by making the approximatio V_{ub} tion can be simplified by making the approximation of \mathcal{O}_{l}^{μ} can be simplified by making the approximation of \mathcal{O}_{l}^{μ} can be set to be approximated on \mathcal{O}_{l}^{μ} by making the approximated on \mathcal{O}_{l}^{μ} can be set to be approximated on \mathcal{O}_{l}^{μ} by making the approximated on \mathcal{O}_{l}^{μ} by making the approximated on \mathcal{O}_{l}^{μ} by the set to be approximated on \mathcal{O}_{l}^{μ} b U so terms proportional to q^{μ} can zonvione form factor $f^{+}(q^{2})$. $m_l \to Q, q^{\mu} D_{\mu}$ Tł v on \bar{b} decay $B^+ \to \tau \nu$ rely on $en t^b$ QCD, but uncertainty is small. 1.53(1.53)

I DE generally withten in terms of two torm factors

Situation as of last PDG version

• Leptonic measurement not precise enough to tell which $G_F^{20} \mathbb{P}_{ub} = \frac{32}{P_{\pi}} |f^+(q^2)|^2$, $G_F^{20} \mathbb{P}_{ub} = \frac{1}{P_{\pi}} |f^+(q^2)|^2$, (1.53)

Semi-leptonics at LHCb

Best signature fully charged final state, apart from a single neutrino.

The decay $\Lambda_b^{\nu} \to p \mu \nu$

- The decay $\Lambda_b^0 \to p \mu \nu$ is the baryonic version of $B \to \pi \ell \nu$.
- Cleaner at LHCb as protons are rarer than kaons/pions.
- Λ_b baryons not produced at BaBar or Belle experiments but at the LHC produced half as often as B mesons.

Imperial College

Analysis strategy

- Normalise signal yield to V_{cb} decay, $\Lambda_b^0
 ightarrow \Lambda_c \mu
 u$
 - Cancel many systematic uncertainties, including the production rate of Λ_b baryons.
- Calculate the branching fraction ratio at high q², only use data in the region with lattice points.

Results

- Confirms tension inclusive/exclusive tension.
- Precision split between lattice/experimental data.
 - From experimental side need to improve $\mathcal{B}(\Lambda_c \to pK\pi)$

Differential measurement?

- Should we do a differential measurement of $\Lambda_b^0 \to p \mu \nu$?
 - Resolution is pretty wide compared to B-factories.
 - Do not rely heavily on z-expansion as we are not extrapolating.

We would probably need more data to understand migration between different bins.

Beyond $\Lambda_h^0 \to p \mu \nu$

- There are several decays to consider.
 - Golden modes: $B \to \pi \ell \nu$, $B^0_s \to K^+ \mu^- \nu$
 - Excited modes: $B \to \rho \mu \nu$, $\Lambda_b^0 \to N^* \mu \nu$, $B \to p \bar{p} \mu \nu \dots$
- Adding extra tracks to final state reduces background and improves signal resolution.

$B_s^0 \to K^+ \mu^- \nu$

• The decay $B_s^0 \to K^+ \mu^- \nu$ has the potential to produce the most precise result there is.

plots from RBC/UKQCD group, arXiv:1501.05373

- The same lattice data produces twice as good precision for $B^0_s\to K^+\mu^-\nu$ w.r.t. $B\to\pi\ell\nu$

 $B^0_s \to K^+ \mu^- \nu \text{ vs } \Lambda^0_b \to p \mu \nu$

Decay	Λ_b^0	B_s^0
theory error	5%	??
prod frac	20%	10%
BF	4×10^{-4}	1×10^{-4}
$\mathcal{B}(X_c)$ error	$+5.3 \ -4.7 \ \%$	$\pm 3.9\%$
background	Λ_c^+	$\Lambda_c^+, D_s, D^+, D^0$

- $B_s^0 \to K^+ \mu^- \nu$ is clearly more difficult than $\Lambda_b^0 \to p \mu \nu$ but has better ultimate precision.
- We are working hard on this, stay tuned for next year.

$\left|V_{ub}\right|$ with B_c mesons

 B_c^+

- B_c mesons can also decay via V_{ub} .
- Signature is $B_c^+ \to D^0 \mu^+ \nu X$ and $B_c^+ \to D^+ \mu^+ \nu X$ $_{\bar{b}}$

- We have around 10,000 $B_c^+ \rightarrow J/\psi \mu^+ \nu X$ candidates from LHCb-PAPER-2013-063.
 - Expect about 100 $B_c^+ \rightarrow D^0 \mu^+ \nu X$ candidates.
- Could we get theoretical control to determine $|V_{ub}|/|V_{cb}|$ ratio?

Leptonic decays

- Purely leptonic V_{ub} decays are difficult, if not impossible to find at LHCb.
 - $B^+ \to \tau \nu$ is clearly a waste of time.
- $B^+ \rightarrow \mu \nu$ better, however helicity suppression makes the SM BF too rare to be useful for $|V_{ub}|$.
- Radiate off initial leg to remove helicity suppression.

 Analysis on-going. We plan to remove events with q² above 1GeV/c² - is this ok?

Vub T decays

- If there is NP in $V_{cb} \tau$ decays, what about V_{ub} ?
 - Less SM background.

• Excited states can be used here. $R(N^*) = \frac{\mathcal{B}(\Lambda_b \to N^* \tau \nu)}{\mathcal{B}(\Lambda_b \to N^* \mu \nu)}$ $R(p\bar{p}) = \frac{\mathcal{B}(B \to p\bar{p}\tau \nu)}{\mathcal{B}(B \to p\bar{p}\mu\nu)}$

What kind of limits would be interesting, given constraints on $\mathcal{B}(B \to \pi \tau \nu)$ from Belle (arXiv:1509.06521)?

Other ideas

- Kaon veto applied in inclusive measurement to suppress V_{cb} background.
- Can the decays $B \to KK\pi\mu\nu$ and $B \to KK\mu\nu$ help control the efficiency of this (I. Bigi, arXiv:1507.01842)?
- Another distinctive signature is $B \rightarrow p\bar{p}\mu\nu$. Could we learn anything about $|V_{ub}|$ or the hadronic structure?
- What about angular analyses of e.g. $B \rightarrow \rho \mu \nu$, is there room left for significant deviations from the SM predictions?

Summary

- LHCb has measured $|V_{ub}|$ using $\Lambda_b^0 \to p \mu \nu$ decays.
- The |V_{ub}| field is relatively new to LHCb, but is expanding rapidly.
- We will obviously try to do everything we can. However, input to what is particularly interesting or new ideas are very welcome.

RH currents

$B \longrightarrow \pi V$

