Lattice progress for semileptonic b decays

Stefan Meinel

November 4, 2015

"Phenomenology of semileptonic B-meson decays with form factors from lattice QCD,"

[D. Du et al. (Fermilab Lattice and MILC Collaborations), arXiv:1510.02349]

"Phenomenology of semileptonic B-meson decays with form factors from lattice QCD,"

[D. Du et al. (Fermilab Lattice and MILC Collaborations), arXiv:1510.02349]

1 $\Lambda_b \to p \, \ell^- \bar{\nu}$ and $\Lambda_b \to \Lambda_c \ell^- \bar{\nu}$

$2 \quad \Lambda_b \to \Lambda \ell^+ \ell^-$

3 Outlook: multi-hadron and nonlocal matrix elements

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}(\Lambda_b \to p\mu\bar{\nu}) = |V_{ub}|^2 \times \mathrm{function}\Big[\langle p \,|\, \bar{u}\gamma^{\mu}b \,|\Lambda_b\rangle, \ \langle p \,|\, \bar{u}\gamma^{\mu}\gamma_5b \,|\Lambda_b\rangle\Big],$$
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}(\Lambda_b \to \Lambda_c\mu\bar{\nu}) = |V_{cb}|^2 \times \mathrm{function}\Big[\langle\Lambda_c \,|\, \bar{c}\gamma^{\mu}b \,|\Lambda_b\rangle, \ \langle\Lambda_c \,|\, \bar{c}\gamma^{\mu}\gamma_5b \,|\Lambda_b\rangle\Big]$$

Helicity form factors [T. Feldmann and M. Yip, PRD 85, 014035 (2012)]:

$$\langle F | \overline{q} \gamma^{\mu} b | \Lambda_b \rangle = \overline{u}_F \left[(m_{\Lambda_b} - m_F) \frac{q^{\mu}}{q^2} f_0 + \frac{m_{\Lambda_b} + m_F}{s_+} \left(p^{\mu} + p'^{\mu} - (m_{\Lambda_b}^2 - m_F^2) \frac{q^{\mu}}{q^2} \right) f_+ \right.$$

$$+ \left(\gamma^{\mu} - \frac{2m_F}{s_+} p^{\mu} - \frac{2m_{\Lambda_b}}{s_+} p'^{\mu} \right) f_{\perp} \left] u_{\Lambda_b},$$

$$\begin{split} \langle F|\overline{q}\gamma^{\mu}\gamma_{5}b|\Lambda_{b}\rangle &= -\overline{u}_{F}\gamma_{5}\bigg[\big(m_{\Lambda_{b}}+m_{F}\big)\frac{q^{\mu}}{q^{2}}g_{0} \\ &+\frac{m_{\Lambda_{b}}-m_{F}}{s_{-}}\left(p^{\mu}+p^{\prime\mu}-(m_{\Lambda_{b}}^{2}-m_{F}^{2})\frac{q^{\mu}}{q^{2}}\right)g_{+} \\ &+\left(\gamma^{\mu}+\frac{2m_{F}}{s_{-}}p^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{-}}p^{\prime\mu}\right)g_{\perp}\bigg]u_{\Lambda_{b}}. \end{split}$$

$$F=p,\Lambda_c, \quad ar{q}=ar{u},ar{c}, \quad s_{\pm}=(m_{\Lambda_b}\pm m_X)^2-q^2$$

" $\Lambda_b \to p \,\ell^- \,\bar{\nu}_\ell$ and $\Lambda_b \to \Lambda_c \,\ell^- \,\bar{\nu}_\ell$ form factors from lattice QCD with relativistic heavy quarks"

[W. Detmold, C. Lehner, S. Meinel, PRD 92, 034503 (2015)]

Hopper/NERSC

Stampede/TACC

Gauge field configurations generated by the RBC and UKQCD collaborations

[Y. Aoki et al., PRD 83, 074508 (2011)]

- *u*, *d*, *s* quarks: domain-wall action
 [D. Kaplan, PLB 288, 342 (1992); V. Furman and Y. Shamir, NPB 439, 54 (1995)]
- *c*, *b* quarks: "relativistic heavy-quark action" [A. El-Khadra, A. Kronfeld, P. Mackenzie, PRD **55**, 3933 (1997); Y. Aoki *et al.*, PRD **86**, 116003]
- "Mostly nonperturbative" renormalization
 [A. El-Khadra et al., PRD 64, 014502 (2001)]

$\mathbf{H}_{\mathbf{H}} = 0.112 \mathrm{fm}, \ m_{\pi} = 336 \mathrm{M}$	leV i <u></u> ∔ <i>a</i> = 0.0	185 fm, $m_\pi=352~{ m MeV}$
$H_{\pi} = 0.112 \text{fm}, \ m_{\pi} = 270 \text{N}$	leV ⊢ ∔ a = 0.0)85 fm, $m_\pi=295~{ m MeV}$
$H_{\pi} = 0.112 \text{ fm}, \ m_{\pi} = 245 \text{ N}$	leV ⊢ ∰ a = 0.0	085 fm, $m_\pi=227~{ m MeV}$

Combined chiral/continuum/kinematic extrapolation using modified *z*-expansion

[C. Bourrely, I. Caprini, L. Lellouch, PRD 79, 013008 (2009)]

$$z^{f}(q^{2}) = rac{\sqrt{t_{+}^{f}-q^{2}}-\sqrt{t_{+}^{f}-t_{0}}}{\sqrt{t_{+}^{f}-q^{2}}+\sqrt{t_{+}^{f}-t_{0}}},$$

"Nominal fit"

$$\begin{split} f(q^2) &= \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \bigg[a_0^f \bigg(1 + c_0^f \frac{m_{\pi}^2 - m_{\pi,\text{phys}}^2}{\Lambda_{\chi}^2} \bigg) + a_1^f \, z^f(q^2) \bigg] \\ &\times \bigg[1 + b^f \, \frac{|\mathbf{p}'|^2}{(\pi/a)^2} + d^f \, \frac{\Lambda_{\text{QCD}}^2}{(\pi/a)^2} \bigg], \end{split}$$

"Nominal fit" in physical limit a = 0, $m_{\pi} = m_{\pi, phys}$:

$$f(q^2) = rac{1}{1-q^2/(m_{
m pole}^f)^2} igg[rac{a_0^f}{a_0^f} + a_1^f \, z^f(q^2) igg]$$

Here $a=0.112$ fm, $m_{\pi}=336$ MeV	$\mathbf{H}_{\mathbf{H}}$ $a=0.085~\mathrm{fm},~m_{\pi}=352~\mathrm{MeV}$	$a = 0, \ m_{\pi} = 135 \text{ MeV}$
Here $a=0.112$ fm, $m_{\pi}=270$ MeV	$rac{1}{4}$ $a=0.085$ fm, $m_{\pi}=295$ MeV	
Here $a=0.112$ fm, $m_{\pi}=245$ MeV	$\mathbf{F} = 0.085 \mathrm{fm}, \;\; m_\pi = 227 \mathrm{MeV}$	

Gray band = statistical uncertainty.

"Higher-order fit":

$$\begin{split} f_{\text{HO}}(q^2) &= \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \left[a_0^f \left(1 + c_0^f \frac{m_{\pi}^2 - m_{\pi,\text{phys}}^2}{\Lambda_{\chi}^2} + \tilde{c}_0^f \frac{m_{\pi}^3 - m_{\pi,\text{phys}}^3}{\Lambda_{\chi}^3} \right) \\ &+ a_1^f \left(1 + c_1^f \frac{m_{\pi}^2 - m_{\pi,\text{phys}}^2}{\Lambda_{\chi}^2} \right) z^f(q^2) + a_2^f \left[z^f(q^2) \right]^2 \right] \\ &\times \left[1 + b^f \frac{|\mathbf{p}'|^2}{(\pi/a)^2} + d^f \frac{\Lambda_{\text{QCD}}^2}{(\pi/a)^2} + \tilde{b}^f \frac{|\mathbf{p}'|^3}{(\pi/a)^3} + \tilde{d}^f \frac{\Lambda_{\text{QCD}}^3}{(\pi/a)^3} \right. \\ &+ j^f \frac{|\mathbf{p}'|^2 \Lambda_{\text{QCD}}}{(\pi/a)^3} + k^f \frac{|\mathbf{p}'| \Lambda_{\text{QCD}}^2}{(\pi/a)^3} \right] \end{split}$$

Higher-order fit parameters constrained with Gaussian priors to be natural-sized. Modified data correlation matrix to include other sources of uncertainty. "Higher-order fit" in physical limit a = 0, $m_{\pi} = m_{\pi,\text{phys}}$:

$$f_{\rm HO}(q^2) = \frac{1}{1 - q^2 / (m_{\rm pole}^f)^2} \left[a_0^f + a_1^f z^f(q^2) + a_2^f [z^f(q^2)]^2 \right]$$

Compute systematic uncertainty of any observable O using

$$\sigma_{O,\text{syst.}} = \max\left(|O_{\text{HO}} - O|, \sqrt{|\sigma_{\text{HO}}^2 - \sigma_O^2|}\right)$$

$$rac{{
m d}\Gamma/{
m d}q^2}{|V_{ub}|^2}~({
m ps}^{-1}~{
m GeV}^{-2})$$

$$rac{{
m d}\Gamma/{
m d}q^2}{|V_{ub}|^2}~({
m ps}^{-1}~{
m GeV}^{-2})$$

$$\begin{split} &\frac{1}{|V_{ub}|^2} \int_{15 \text{ GeV}^2}^{q^2_{\text{max}}} \frac{\mathrm{d}\Gamma(\Lambda_b \to p \; \mu^- \bar{\nu}_\mu)}{\mathrm{d}q^2} \mathrm{d}q^2 \\ &= (12.31 \pm 0.76_{\text{stat}} \pm 0.77_{\text{syst}}) \; \text{ps}^{-1} \end{split}$$

$$rac{{
m d}\Gamma/{
m d}q^2}{|V_{cb}|^2}~({
m ps}^{-1}~{
m GeV}^{-2})$$

$$rac{{
m d}\Gamma/{
m d}q^2}{|V_{cb}|^2}~({
m ps}^{-1}~{
m GeV}^{-2})$$

$$\begin{aligned} &\frac{1}{|\boldsymbol{V_{cb}}|^2} \int_{7 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{\mathrm{d}\Gamma(\Lambda_b \to \Lambda_c \; \mu^- \bar{\nu}_\mu)}{\mathrm{d}q^2} \mathrm{d}q^2 \\ &= (8.37 \pm 0.16_{\text{stat}} \pm 0.34_{\text{syst}}) \; \mathrm{ps}^{-1} \end{aligned}$$

$$\frac{|V_{cb}|^2}{|V_{ub}|^2} \frac{\int_{15 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{\mathrm{d}\Gamma(\Lambda_b \to p \ \mu^- \bar{\nu}_\mu)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{7 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{\mathrm{d}\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_\mu)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

 $= 1.471 \pm 0.095_{\,\text{stat.}} \pm 0.109_{\,\text{syst.}}$

Combine with LHCb measurement:

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004_{\text{expt}} \pm 0.004_{\text{lat}}$$

[LHCb Collaboration, Nature Physics 11, 743-747 (2015)]

Plot by Andreas Kronfeld (private communication)

$$R[D^{(*)}] = \frac{\Gamma[B \to D^{(*)} \tau \,\overline{\nu}_{\tau}]}{\Gamma[B \to D^{(*)} \ell \,\overline{\nu}_{\ell}]_{\ell=e,\mu}}$$

$$rac{{
m d}\Gamma/{
m d}q^2}{|V_{cb}|^2}~({
m ps}^{-1}~{
m GeV}^{-2})$$

SM Prediction:

$$R[\Lambda_c] = \frac{\Gamma(\Lambda_b \to \Lambda_c \ \tau^- \bar{\nu}_{\tau})}{\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_{\mu})} = 0.3328 \pm 0.0074 \pm 0.0070$$

LHCb measurement?

1 $\Lambda_b \to p \, \ell^- \bar{\nu}$ and $\Lambda_b \to \Lambda_c \ell^- \bar{\nu}$

$2 \quad \Lambda_b \to \Lambda \ell^+ \ell^-$

3 Outlook: multi-hadron and nonlocal matrix elements

Combines the best aspects of $B \to K^* \mu^+ \mu^-$ and $B \to K \mu^+ \mu^-$:

 Λ has nonzero spin and is stable under strong interactions.

Angular observables studied in

- T. Gutsche et al., PRD 87, 074031 (2013),
- P. Böer, T. Feldmann, D. van Dyk, JHEP 01, 155 (2015)

2012: $\Lambda_b \rightarrow \Lambda$ form factors from lattice QCD with static *b* quarks [W. Detmold, C.-J. D. Lin, S. Meinel, M. Wingate, PRD **87**, 074502]

Introduces systematic uncertainty of order E/m_b where E is relevant hadronic energy scale

New! " $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$ form factors from lattice QCD with relativistic heavy quarks"

[W. Detmold and S. Meinel, in preparation]

Hopper/NERSC

Stampede/TACC

Gray band = statistical uncertainty.

Vector and axial vector form factors

preliminary

Tensor form factors

preliminary

 $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ differential branching fraction

$$\begin{split} \Lambda_b &\to \Lambda \mu^+ \mu^- \text{ lepton-side } A_{\text{FB}} \\ \frac{d^2 \Gamma}{dq^2 \, \text{d} \cos \theta_\ell} &= \frac{d \Gamma}{dq^2} \left[\frac{3}{8} \left(1 + \cos^2 \theta_\ell \right) (1 - f_\text{L}) + A_{\text{FB}}^{(\ell)} \cos \theta_\ell + \frac{3}{4} f_\text{L} \sin^2 \theta_\ell \right] \end{split}$$

 $\Lambda_b
ightarrow \Lambda \mu^+ \mu^-$ lepton-side F_L

$$\frac{\mathsf{d}^{2}\mathsf{\Gamma}}{\mathsf{d}q^{2}\,\mathsf{d}\!\cos\theta_{\ell}} = \frac{\mathsf{d}\mathsf{\Gamma}}{\mathsf{d}q^{2}}\left[\frac{3}{8}\left(1+\cos^{2}\theta_{\ell}\right)\left(1-F_{\mathsf{L}}\right) + A_{\mathsf{FB}}^{(\ell)}\cos\theta_{\ell} + \frac{3}{4}F_{\mathsf{L}}\sin^{2}\theta_{\ell}\right]$$

Fits of Wilson coefficients including $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ in progress (Danny van Dyk's talk this afternoon).

1
$$\Lambda_b \to p \, \ell^- \bar{\nu}$$
 and $\Lambda_b \to \Lambda_c \ell^- \bar{\nu}$

2
$$\Lambda_b \to \Lambda \ell^+ \ell^-$$

3 Outlook: multi-hadron and nonlocal matrix elements

February 2015 workshop (slides and videos available online):

www.bnl.gov/mnme2015/

Coupled $\pi\pi$, $K\bar{K}$ scattering in P wave and the ρ resonance from latticeQCD

D. Wilson, R. Briceno, J. Dudek, R. Edwards, C. Thomas, arXiv:1507.02599

Resonances in coupled $K\pi$, $K\eta$ scattering from lattice QCD

J. Dudek, R. Edwards, C. Thomas, D. Wilson, PRL 113, 182001 (2014),
 J. Dudek, R. Edwards, C. Thomas, D. Wilson, PRD 91, 054008 (2015)

Rigorous method for computing 0 \rightarrow 2, 1 \rightarrow 2 and 2 \rightarrow 2 hadronic matrix elements in lattice QCD

- R. Briceno, M. Hansen, A. Walker-Loud, PRD 91, 034501 (2015),
- R. Briceno, M. Hansen, arXiv:1502.04314,
- R. Briceno, M. Hansen, arXiv:1509.08507

The resonant $\pi\gamma \rightarrow \pi\pi$ amplitude from lattice QCD

R. Briceno, J. Dudek, R. Edwards, C. Shultz, C. Thomas, D. Wilson, arXiv:1507.06622

The resonant $\pi\gamma \rightarrow \pi\pi$ amplitude from lattice QCD

R. Briceno, J. Dudek, R. Edwards, C. Shultz, C. Thomas, D. Wilson, arXiv:1507.06622

Long-distance contributions to rare kaon decays from lattice QCD

- A. Portelli and X. Feng, talks at MNME 2015,
- C. Sachrajda, arXiv:1503.01691,
- N. Christ, X. Feng, A. Portelli, C. Sachrajda, arXiv:1507.03094

QED corrections to weak decays from lattice QCD

C. Sachrajda, talk at MNME 2015; N. Carrasco et al., PRD 91, 074506 (2015)

Summary

- There has been substantial progress with lattice calculations of B and Λ_b semileptonic decay form factors.
- There are exciting new developments for multi-hadron and nonlocal matrix elements on the lattice.

