$B \rightarrow \pi \ell^+ \ell^-$ at large recoil: theory vs LHCb measurement

Aleksey Rusov

University of Siegen, Germany, (on leave from P. G. Demidov Yaroslavl State University, Russia)

Workshop "Implications of LHCb measurements and future prospects", CERN, 3 - 5 November 2015

Based on Phys. Rev. D **92**, 074020 (2015), in collab. with Alexander Khodjamirian and Christian Hambrock

< ロ > < 同 > < 回 > < 回

LHCb

Introduction

Aleksev Rusov

- $b
 ightarrow d\ell^+ \ell^-$ processes are CKM suppressed vs $b
 ightarrow s\ell^+ \ell^-$
- There is CP-asymmetry violation in SM
- $b
 ightarrow d\ell^+\ell^-$ is a possible source of New physics
- LHCb has measured the branching fraction and *CP*-asymmetry of the $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ [LHCb-PAPER-2015-035 <u>ArXiv:1509.00414</u>]:

$$\begin{array}{lll} \mathrm{Br}(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) &=& (1.83 \pm 0.24 \pm 0.05) \times 10^{-8} \\ \mathcal{A}_{CP}(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) &=& -0.11 \pm 0.12 \pm 0.01 \end{array}$$

• We calculate hadronic observables in $B \to \pi \ell^+ \ell^-$ and predict *CP*-asymmetry at $0 < q^2 < 8 \, {\rm GeV}^2$

イロト イポト イヨト イヨ

Effective Weak Hamiltonian

$$H_{\text{eff}}^{b \to d} = \frac{4G_F}{\sqrt{2}} \left(\lambda_u \sum_{i=1}^2 C_i \mathcal{O}_i^u + \lambda_c \sum_{i=1}^2 C_i \mathcal{O}_i^c - \lambda_t \sum_{i=3}^{10} C_i \mathcal{O}_i \right) + h.c.$$

 $C_i(\mu)$ – Wilson coefficients, O_i – dimension-six operators

$$\lambda_p = V_{pb}V^*_{pd} \quad (p = u, c, t)$$

 $\lambda_u \sim \lambda_c \sim \lambda_t \sim \lambda^3$

イロト イヨト イヨト イヨト

Sac

LHCb

Ξ.

Aleksey Rusov

Amplitude of the $B \rightarrow \pi \ell^+ \ell^-$ decay

$$egin{aligned} \mathcal{A}(B
ightarrow \pi \ell^+ \ell^-) &= -\langle \pi \ell^+ \ell^- | H_{ ext{eff}}^{b
ightarrow d} | \mathcal{B}(p+q)
angle \ &= rac{\mathcal{G}_F}{\sqrt{2}} rac{lpha_{ ext{em}}}{\pi} \lambda_t f_{B\pi}^+(q^2) iggl[igl(ar{\ell} \gamma^\mu \ell igr) \, p_\mu iggl(\mathcal{C}_9 + \Delta \mathcal{C}_9^{(B\pi)}(q^2) \ &+ rac{2m_b}{m_B + m_\pi} \mathcal{C}_7^{ ext{eff}} rac{f_{B\pi}^-(q^2)}{f_{B\pi}^+(q^2)} iggr) + igl(ar{\ell} \gamma^\mu \gamma_5 \ell igr) \, p_\mu \mathcal{C}_{10} iggr], \end{aligned}$$

where determined by nonlocal effects q^2 -dependent addition to C_9

$$\Delta C_{9}^{(B\pi)}(q^{2}) = -16\pi^{2} \frac{\lambda_{u} \mathcal{H}^{(u)}(q^{2}) + \lambda_{c} \mathcal{H}^{(c)}(q^{2})}{\lambda_{t} f_{B\pi}^{+}(q^{2})}$$

< 口 > < 同

LHCb

is the source of the direct *CP*-asymmetry

Aleksey Rusov

Hadronic input in $B \rightarrow \pi \ell^+ \ell^-$

$B \rightarrow \pi$ transition form-factors

 $\langle \pi(p)|\bar{d}\gamma^{\mu}b|B(p+q)
angle \sim f^{+}_{B\pi}(q^{2}), \quad \langle \pi(p)|\bar{d}\sigma^{\mu\nu}q_{\nu}b|B(p+q)
angle \sim f^{T}_{B\pi}(q^{2})$

We need the ratio $r_T(q^2) \equiv f_{B\pi}^T(q^2)/f_{B\pi}^+(q^2)$

Nonlocal effects

$$\begin{aligned} \mathcal{H}^{(u,c)}_{\mu} &= i \int d^4 x e^{iqx} \langle \pi(p) | \mathrm{T} \bigg\{ j^{\mathrm{em}}_{\mu}(x), \bigg[C_1 \mathcal{O}^{(u,c)}_1(0) + C_2 \mathcal{O}^{(u,c)}_2(0) \\ &+ \sum_{k=3-6,8} C_k \mathcal{O}_k(0) \bigg] \bigg\} | B(p+q) \rangle &= \big[(p \cdot q) q_{\mu} - q^2 p_{\mu} \big] \, \mathcal{H}^{(u,c)}(q^2) \end{aligned}$$

イロト イポト イヨト イヨト

3

LHCb

Aleksey Rusov

$B \rightarrow \pi$ form factors

• We use LCSR results for $f_{B\pi}^+(q^2)$ fitted to BCL parametrization: [I.S. Imsong, A. Khodjamirian, Th. Mannel, D.V. Dyk (2014)]

$$\begin{aligned} f_{B\pi}^{+}(q^2) &= \frac{f_{B\pi}^{+}(0)}{1-q^2/m_{B^*}^2} \left(1+b_1^{+}\left[z(q^2,t_0)-z(0,t_0)-\frac{1}{3}\left(z(q^2,t_0)^3-z(0,t_0)^3\right) \right] \right. \\ &+ b_2^{+}\left[z(q^2,t_0)^2-z(q^2,t_0)^2+\frac{2}{3}\left(z(q^2,t_0)^3-z(0,t_0)^3\right) \right] \right) \end{aligned}$$

$$\begin{aligned} f_{B\pi}(0) &= & 0.307 \pm 0.02 \\ b_1^+ &= & -1.31 \pm 0.42 \\ b_2^+ &= & -0.904 \pm 0.444 \end{aligned} \qquad \rho^{BCL} = \begin{pmatrix} 1.000 & 0.503 & -0.391 \\ 0.503 & 1.000 & -0.824 \\ -0.391 & -0.824 & 1.000 \end{pmatrix}$$

■ In the large hadronic recoil for
$$f_{T}(q^{2})$$
:
 $f_{B\pi}^{T}(q^{2}) = r_{T}(q^{2})f_{B\pi}^{+}(q^{2}) \simeq r_{T}(0)f_{B\pi}^{+}(q^{2}), \quad r_{T}(0) = 0.98 \pm 0.02$
[G. Duplancic et al. (2008)]

Calculation of $H^{(u,c)}(q^2)$ at $q^2 < 0$

 LO, factorizable and weak annihilation (QCD factorization) [M. Beneke, Th. Feldmann, D. Seidel (2001)]

■ NLO, factorizable

[H.H.Asatryan, H.M. Asatrian, C. Greub, M. Walker (2002); H.M.Asatrian, K. Bieri, C. Greub, M. Walker (2004)]

Calculation of $H^{(u,c)}(q^2)$ at $q^2 < 0$

NLO, nonfactorizable (hard gluons) [M. Beneke, Th. Feldmann, D. Seidel (2001)]

Soft gluons, nonfactorizable
 [A. Khodjamirian, Th. Mannel, A.A. Pivovarov, Y.-M. Wang (2010)]
 [A. Khodjamirian, Th. Mannel, Y.-M. Wang (2013)]

Image: A math a math

Dispersion Relations

Dispersion relations (analytic continuation of $\mathcal{H}^{(u,c)}(q^2)$ to $q^2 > 0$):

$$\mathcal{H}^{(u,c)}(q^2) = (q^2 - q_0^2) \left[\sum_{V = \rho, \omega, J/\psi, \psi(2S)} \frac{k_V f_V A_{BV\pi}^{u,c}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{\text{tot}})} \right]$$

$$+ \int_{s_0^{u,c}}^{\infty} ds \frac{\rho^{(u,c)}(s)}{(s-q_0^2)(s-q^2-i\epsilon)} \bigg] + \mathcal{H}^{(u,c)}(q_0^2)$$

A^{u,c}_{BVπ} = |A^{u,c}_{BVπ}|e^{iδ^{u,c}}_{BVπ}
 |A^{u,c}_{BVπ}| are extracted from nonleptonic B → Vπ decays
 δ^{u,c}_{BVπ} are extracted from the fit of the dispersion relation to H^(u,c)(q²) for q² < 0
 For ρ^(u,c)(s) apply quark-hadron duality

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

LHCb

Aleksey Rusov

The amplitude of the nonleptonic $B \rightarrow V\pi$ decay takes the form:

$$\begin{aligned} A(B \to V\pi) &= \langle V(q)\pi(p)|H^{b\to d}_{\mathrm{eff}(\mathrm{NL})}|B(p+q)\rangle \\ &= \frac{4G_F}{\sqrt{2}}m_V(\varepsilon^*_V \cdot p)\bigg(\lambda_u A^u_{BV\pi} + \lambda_c A^c_{BV\pi}\bigg) \end{aligned}$$

Ways of the extraction of $A_{BV\pi}^{u,c}$:

- Calculation in framework of QCD factorization approach [M. Beneke, M. Neubert (2003)]
- Experimental data on branching fraction and CP-asymmetry
- Isospin symmetry relations

イロト イヨト イヨト イ

The absolute values of the amplitudes in $B \to V \pi$

Mode	$ A^u_{BV\pi} $	$ A_{BV\pi}^c $		
$B^{\mp} ightarrow ho^{0} \pi^{\mp}$	20.8 ^{+2.7} _{-2.3} (QCDF)	$1.3^{+1.1}_{-0.4}$ (QCDF)		
$B^{\mp} ightarrow \omega \pi^{\mp}$	$19.1^{+2.7}_{-2.0}$ (QCDF)	$0.3^{+0.4}_{-0.1}$ (QCDF)		
$B^{\mp} ightarrow J/\psi \pi^{\mp}$	$0.5^{+9.7}_{-0.5}$ (Exp. data)	$29.2^{+1.4}_{-1.5}$ (Exp. data)		
$B^{\mp} ightarrow \psi(2S)\pi^{\mp}$	$3.5^{+6.7}_{-3.5}$ (Exp. data)	$32.3^{+2.0}_{-2.1}$ (Exp. data)		

Mode	$ A^u_{BV\pi} $	$ A^c_{BV\pi} $		
$B^0 o ho^0 \pi^0$	$9.9^{+1.3}_{-1.4}$ (Exp. data)	0 (negligible)		
$B^0 o \omega \pi^0$	0 (negligible)	0 (negligible)		
$B^0 ightarrow J/\psi \pi^0$	$0.3^{+6.9}_{-0.3}$ (Isospin rel.)	$20.6^{+1.0}_{-1.1}$ (Isospin rel.)		
$B^{0} ightarrow \psi(2S)\pi^{0}$	2.4 ^{+4.7} _{-2.4} (Isospin rel.)	$22.8^{+1.4}_{-1.5}$ (Isospin rel.)		

• Need more data on NL decays, e.g. $B \to \rho^{0'}\pi$, $B \to \omega'\pi$

Observables in $B \to \pi \ell^+ \ell^-$

Dilepton invariant mass spectrum

Aleksey Rusov

Observables in $B \to \pi \ell^+ \ell^-$

CP and isospin asymmetries

Observables in $B \to \pi \ell^+ \ell^-$

Binned values

Bin [GeV ²]	[0.05, 2.0]	[2.0, 4.0]	[4.0, 6.0]	[6.0, 8.0]	[1.0, 6.0]
$\mathcal{B}(B^-)$	$0.176^{+0.018}_{-0.018}$	$0.114\substack{+0.008\\-0.007}$	$0.114\substack{+0.016\\-0.007}$	$0.107\substack{+0.036\\-0.009}$	$0.126^{+0.013}_{-0.010}$
$\mathcal{B}(B^+)$	$0.249\substack{+0.030\\-0.020}$	$0.156\substack{+0.009\\-0.008}$	$0.139\substack{+0.016\\-0.011}$	$0.128\substack{+0.030\\-0.023}$	$0.168\substack{+0.016\\-0.012}$
$2 imes \mathcal{B}(ar{B}^0)$	$0.140\substack{+0.009\\-0.009}$	$0.117\substack{+0.008\\-0.008}$	$0.109\substack{+0.008\\-0.008}$	$0.099\substack{+0.010\\-0.007}$	$0.119\substack{+0.008\\-0.008}$
$2 imes \mathcal{B}(B^0)$	$0.124\substack{+0.008\\-0.008}$	$0.124\substack{+0.008\\-0.008}$	$0.116\substack{+0.008\\-0.007}$	$0.109\substack{+0.011\\-0.008}$	$0.121\substack{+0.008\\-0.008}$
$\mathcal{A}^{(-+)}_{CP}$	$-0.171\substack{+0.027\\-0.045}$	$-0.156\substack{+0.027\\-0.024}$	$-0.099\substack{+0.047\\-0.025}$	$-0.091\substack{+0.093\\-0.053}$	$-0.143\substack{+0.035\\-0.029}$
$\mathcal{A}_{CP}^{(ar{0}0)}$	$0.063\substack{+0.014\\-0.015}$	$-0.028\substack{+0.010\\-0.010}$	$-0.028\substack{+0.015\\-0.015}$	$-0.047\substack{+0.023\\-0.023}$	$-0.008\substack{+0.013\\-0.013}$
\mathcal{A}_{I}	$-0.195\substack{+0.033\\-0.035}$	$-0.020\substack{+0.031\\-0.032}$	$-0.021\substack{+0.035\\-0.053}$	$-0.021\substack{+0.060\\-0.100}$	$-0.063\substack{+0.033\\-0.040}$

$$\mathcal{B}(B^- o \pi^- \ell^+ \ell^- [q_1^2, q_2^2]) \equiv rac{1}{q_2^2 - q_1^2} \int\limits_{q_1^2}^{q_2^2} dq^2 rac{dB(B^- o \pi^- \ell^+ \ell^-)}{dq^2} \, .$$

문 > 문

990

LHCb

Aleksey Rusov

Sac

LHCb

Aleksey Rusov

Comment concerning the ratio of branching fractions

$${\cal R}(q^2)\equiv {d\Gamma(B o \pi\ell^+\ell^-)/dq^2\over d\Gamma(B o K\ell^+\ell^-)/dq^2}$$

$$R(q^{2}) = N(q^{2}) \left| \frac{V_{td}}{V_{ts}} \right|^{2} \left| \frac{f_{B\pi}^{+}(q^{2})}{f_{BK}^{+}(q^{2})} \right|^{2} \frac{\left| A^{\pi}(q^{2}) + B^{\pi}(q^{2}) + \alpha_{u} C^{\pi}(q^{2}) \right|^{2} + |C_{10}|^{2}}{\left| A^{K}(q^{2}) + B^{K}(q^{2}) \right|^{2} + |C_{10}|^{2}}$$

LHCb

Conclusion and outlook

- We analyse the nonlocal contributions in $B \to \pi \ell^+ \ell^-$ decays at large hadronic recoil
- We predict differential decay rate, direct *CP*-asymmetry and isospin asymmetry in $B \rightarrow \pi \ell^+ \ell^-$ for $0 < q^2 < 8 \text{ GeV}^2$
- Further improvements possible:
 - More elaborated ansatz for hadronic dispersion relations (including radial excitations of light vector mesons)
 - Precise measurements of the nonleptonic $B
 ightarrow V \pi$ decays
 - Measurement of the binned CP-asymmetry

< ロト < 同ト < ヨト < ヨ

Backup

590

LHCb

æ

Image: A matrix of the second seco

2

< ∃ >

Operator Basis

$$\begin{split} \mathcal{O}_{9} &= \frac{\alpha_{em}}{4\pi} \left(\bar{d}_{L} \gamma^{\mu} b_{L} \right) \left(\bar{\ell} \gamma_{\mu} \ell \right) , \quad \mathcal{O}_{10} = \frac{\alpha_{em}}{4\pi} \left(\bar{d}_{L} \gamma^{\mu} b_{L} \right) \left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell \right) , \\ \mathcal{O}_{7\gamma} &= -\frac{e \, m_{b}}{16\pi^{2}} \left(\bar{d}_{L} \sigma^{\mu\nu} b_{R} \right) F_{\mu\nu} , \\ \mathcal{O}_{1}^{u} &= \left(\bar{d}_{L} \gamma_{\mu} u_{L} \right) \left(\bar{u}_{L} \gamma^{\mu} b_{L} \right) , \quad \mathcal{O}_{2}^{u} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} u_{L}^{j} \right) \left(\bar{u}_{L}^{j} \gamma^{\mu} b_{L}^{i} \right) , \\ \mathcal{O}_{1}^{c} &= \left(\bar{d}_{L} \gamma_{\mu} c_{L} \right) \left(\bar{c}_{L} \gamma^{\mu} b_{L} \right) , \quad \mathcal{O}_{2}^{c} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} c_{L}^{j} \right) \left(\bar{c}_{L}^{j} \gamma^{\mu} b_{L}^{i} \right) , \\ \mathcal{O}_{3} &= \left(\bar{d}_{L} \gamma_{\mu} b_{L} \right) \sum_{q} \left(\bar{q}_{L} \gamma^{\mu} q_{L} \right) , \quad \mathcal{O}_{4} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} b_{L}^{j} \right) \sum_{q} \left(\bar{q}_{L}^{j} \gamma^{\mu} q_{L}^{i} \right) , \\ \mathcal{O}_{5} &= \left(\bar{d}_{L} \gamma_{\mu} b_{L} \right) \sum_{q} \left(\bar{q}_{R} \gamma^{\mu} q_{R} \right) , \quad \mathcal{O}_{6} &= \left(\bar{d}_{L}^{i} \gamma_{\mu} b_{L}^{j} \right) \sum_{q} \left(\bar{q}_{R}^{j} \gamma^{\mu} q_{R}^{i} \right) , \\ \mathcal{O}_{8g} &= - \frac{g_{s} m_{b}}{16\pi^{2}} \left(\bar{d}_{L}^{i} \sigma_{\mu\nu} (T^{a})^{ij} b_{R}^{j} \right) G^{a\mu\nu} \end{split}$$

LHCb

Aleksey Rusov

Dispersion Relations, final form

$$\begin{aligned} \mathcal{H}^{(p)}(q^2) &= (q^2 - q_0^2) \Biggl[\sum_{V = \rho, \omega, J/\psi, \psi(2S)} k_V f_V \frac{|A_{BV\pi}^p| \exp(i\delta_{BV\pi}^{(p)})}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{\text{tot}})} \\ &+ \int_{\tilde{s}_0(s_0)}^{4m_D^2} ds \frac{\rho_{LO}^{(p)}(s)}{(s - q_0^2)(s - q^2 - i\sqrt{s}\Gamma_{\text{eff}}(s))} \\ &+ |a_p| \exp(i\phi_a) + |b_p| \exp(i\phi_b) \frac{q^2}{4m_D^2} \Biggr] + \mathcal{H}^{(p)}(q_0^2), \quad p = u, c \end{aligned}$$

DQC

LHCb

문▶ 문

Aleksey Rusov