New physics in baryonic $b \rightarrow c$ modes

Alakabha Datta

University of Mississippi

November 4, 2015

November 3-5, 2015 LHCb, CERN

Alakabha Datta (UMiss) [New physics in baryonic](#page-31-0) b \rightarrow c modes November 4, 2015 1/32

 QQ

Outline of Talk

- \bullet One of the main goals in B physics experiments in to find new physics (NP) by observing deviations from the standard model (SM) predictions. Hints of deviation in $\bar B\to D^+\tau^-\bar\nu_\tau$ and $\bar B\to D^{*+}\tau^-\bar\nu_\tau.$
- **Implication of these deviations in** $\Lambda_b \to \Lambda_c \tau \bar{\nu}_{\tau}$ **decays since the under**lying transition in both baryon and meson decays is $b\to c\tau^-\bar{\nu}_\tau.$ (arXiv:1502.07230 [New Physics], arXiv:1502.04864 [SM])
- Parametrization of new physics and discussion on models.
- **•** Form factors and SM predictions in $\Lambda_b \to \Lambda_c \tau \bar{\nu}_{\tau}$.
- Helicity amplitudes and angular distribution with new physics operators.
- Results for rates and differential distributions.

 QQ

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Experiments

Recently, the BaBar, Belle and LHCb have reported the following measurements :

$$
R(D) \equiv \frac{\mathcal{B}(\bar{B} \to D^+ \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^+ \ell^- \bar{\nu}_{\ell})} = 0.440 \pm 0.058 \pm 0.042 ,
$$

$$
R(D^*) \equiv \frac{\mathcal{B}(\bar{B} \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{*+} \ell^- \bar{\nu}_{\ell})} = 0.332 \pm 0.024 \pm 0.018 . \tag{1}
$$

Belle and LHCb

$$
R(D) \equiv = 0.375 \pm 0.064 \pm 0.026 ,
$$

\n
$$
R(D^*) \equiv = 0.293 \pm 0.038 \pm 0.015 ,
$$

\n
$$
0.336 \pm 0.027 \pm 0.030 .
$$
 (2)

Average and Theory

$$
R(D) \equiv = 0.391 \pm 0.041 \pm 0.028 , 0.300 \pm 0.01,
$$

$$
R(D^*) \equiv = 0.322 \pm 0.018 \pm 0.011 , 0.252 \pm 0.005 . \tag{3}
$$

4 D F

 $\frac{d\Gamma}{dq^2}$ is also measured.

 298

Λ^b Rates

- **•** Semileptonic Λ_b rates are of the same size as B semileptonic Decays.
- $\Lambda_b\to \Lambda_c$ / $^-\bar{\nu}_l$ X is 10.7 \pm 2.2 %, $B^0\to X_c e^+\nu=10.1\pm$ 0.4 %.
- $\Lambda_b \rightarrow \Lambda_c l \bar{\nu}_l$ is $6.2^{+1.4}_{-1.2}$ %.
- Hadron machines can measure Λ_b Decays. Better measurements of $\Lambda_b \to \Lambda_c l \bar{\nu}_l$ and $\Lambda_b \to \Lambda_c \tau \bar{\nu}_{\tau}$ with the differential distribution is desirable.
- Note effects in $R(D^{(*)})$ are large so effects in Λ_b decays can be large enough and go beyond form factor uncertainties.
- Measurement of $R(D^{(*)})$ is larger than the SM value. Can the corresponding ratio for Λ_b decay be less than the SM value for some new physics?

 Ω

スタース ミトス ミトリ ミ

Model independent NP analysis

Effective Hamiltonian for $b\to c\tau^-\bar{\nu}_\tau$ with Non-SM couplings

$$
\mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \Big[(1 + g_L) [\bar{c}\gamma_\mu P_L b] [\bar{l}\gamma^\mu P_L \nu_l] + g_R [\bar{c}\gamma^\mu P_R b] [\bar{l}\gamma_\mu P_L \nu_l] + S_L [\bar{c}P_L b] [\bar{l}P_L \nu_l] + S_R [\bar{c}P_R b] [\bar{l}P_L \nu_l] + T_L [\bar{c}\sigma^{\mu\nu} P_L b] [\bar{l}\sigma_{\mu\nu} P_L \nu_l] \Big].
$$

• Droping tensor interactions

$$
\mathcal{H}_{eff} = \frac{4G_F V_{cb}}{\sqrt{2}} \Big[(1+g_L) [\bar{c}\gamma_\mu P_L b] [\bar{l}\gamma^\mu P_L \nu_l] + g_R [\bar{c}\gamma^\mu P_R b] [\bar{l}\gamma_\mu P_L \nu_l] + g_S [\bar{c}b] [\bar{l}(1-\gamma_5) \nu_l] + g_P [\bar{c}\gamma_5 b] [\bar{l}(1-\gamma_5) \nu_l] \Big].
$$

Models of NP, See for e.g. arXiv:1506.08896

Scalar Type: Most discussed is the Two Higgs Doublet Model II: In $\bar B\to D^{*+}\tau^-\bar\nu_\tau$ and $\bar B\to D^+\tau^-\bar\nu_\tau$ the relevant interaction from charged Higgs is

$$
\mathcal{A} \sim V_{cb} \frac{G_F}{\sqrt{2}} \frac{m_W^2}{m_H^2} \left[\frac{m_c}{m_W} \cot \beta \bar{c} P_L b + \frac{m_b}{m_W} \tan \beta \bar{c} P_R b \right] \frac{m_\tau}{m_W} \tan \beta \bar{\nu}_\tau P_L \tau,
$$

$$
\sim V_{cb} \frac{G_F}{\sqrt{2}} \frac{m_W^2}{m_H^2} \left[\frac{m_b m_\tau}{m_W^2} \tan^2 \beta \right] \bar{c} P_R b \bar{\nu}_\tau P_L \tau.
$$

Only the RH quark interactions survive. This causes problems to explain the data.

 QQ

Models of NP, Scalar- Tensor Type

Scalar and Tensor operators can be generated from scalar leptoquarks: The interaction Lagrangian that induces contributions to the $b \to c\ell\overline{\nu}$ process is (Tanaka:2012nw)

$$
\mathcal{L}_2^{\text{LQ}} = \left(g_{2L}^{ij} \overline{u}_{iR} R_2^T L_{jL} + g_{2R}^{ij} \overline{Q}_{iL} i \sigma_2 \ell_{jR} R_2 \right),
$$

$$
\mathcal{L}_0^{\text{LQ}} = \left(g_{1L}^{ij}, \overline{Q}_{iL}^c i \sigma_2 L_{jL} + g_{1R}^{ij}, \overline{u}_{iR}^c \ell_{jR} \right) S_1,
$$

After performing the Fierz transformations, one finds the general Wilson coefficients at the leptoquark mass scale contributing to the $b \to c\tau\bar{\nu}_l$ process:

$$
S_L = \frac{1}{2\sqrt{2}G_F V_{cb}} \left[-\frac{g_{1L}^{33}g_{1R}^{23*}}{2M_{S_1}^2} - \frac{g_{2L}^{23}g_{2R}^{33*}}{2M_{R_2}^2} \right],
$$

\n
$$
T_L = \frac{1}{2\sqrt{2}G_F V_{cb}} \left[\frac{g_{1L}^{33}g_{1R}^{23*}}{8M_{S_1}^2} - \frac{g_{2L}^{23}g_{2R}^{33*}}{8M_{R_2}^2} \right].
$$

Λ^b [Rates](#page-7-0)

Models of NP, Vector Interactions

• In effective theory framework, we can write operators invariant under the SM gauge group. (e-Print: arXiv:1411.0565, e-Print: arXiv:1412.7164)

> $\mathcal{O}_{NP}^{(1)} \;\; = \;\; G_1(\bar{Q}_L \gamma_\mu Q_L)(\bar{L}_L \gamma^\mu L_L) \;,$ ${\cal O}^{(2)}_{NP} \;\; = \;\; G_2 (\bar{Q}_L \gamma_\mu \sigma^I Q_L) (\bar{L}_L \gamma^\mu \sigma^I L_L) \; .$

These operators can come from a Z' or W' and just modify the SM interactions (g_L). (See e.g. e-Print: arXiv:1506.01705)

- Because of their structure, there are effects and constraints from other b and t decays.
- **•** Prediction:

$$
\left[\frac{R(D)}{R(D^*)}\right]_{expt} (1.21) = \left[\frac{R(D)}{R(D^*)}\right]_{SM} (1.19).
$$

Λ^b [Rates](#page-8-0)

Models of NP, Vector Interactions

The same modification to the SM interactions also comes from triplet leptoquarks:

$$
\mathcal{L}^{\text{LQ}} = h_3^{ij} \bar{Q}_{iL} \gamma^{\mu} \vec{\sigma} \cdot L_{jL} \vec{U}_{3\mu} + g_3^{ij} \bar{Q}_{iL}^c i \sigma_2 \vec{\sigma} \cdot L_{jL} \vec{S}_3.
$$

For $b \to c \tau^- \bar{\nu}_\tau$ with vector triplet leptoquark:

$$
\mathcal{L}_{\text{CC}}^{\text{LQ}} \;\; = \;\; \frac{h_3^{23} h_3^{33*}}{4 M_{U_3}^2} \left[\bar{c} \gamma^\mu (1-\gamma_5) b \right] \left[\bar{\tau} \gamma_\mu (1-\gamma_5) \nu_\tau \right].
$$

For $b \to c \tau^+ \bar{\nu}_\tau$ with scalar triplet leptoquark:

$$
\mathcal{L}_{\text{CC}}^{\text{LQ}} \;\; = \;\; \frac{\mathcal{B}_3^{23} \mathcal{B}_3^{33*}}{4 M_{\text{S}_3}^2} \left[\bar{c} \gamma^\mu (1 - \gamma_5) b \right] \left[\bar{\nu}_\tau^c \gamma_\mu (1 + \gamma_5) \tau^c \right].
$$

 200

$Λ_b$ [Rates](#page-9-0)

▸ Formalism ✧ *Decay Process*

The decay and helicity angles for $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ and $\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell$ are(See 1502.04864)

$$
\Lambda_b \to \Lambda_c (\to \Lambda \pi) W^{*-} (\to \ell^- \bar{\nu_\ell})
$$

Decay Process

The process under consideration is

$$
\Lambda_b(p_{\Lambda_b}) \to \tau^-(p_1) + \bar{\nu_\tau}(p_2) + \Lambda_c(p_{\Lambda_c}).
$$

In the SM the amplitude for this process is

$$
M_{SM} = \frac{G_F V_{cb}}{\sqrt{2}} L^{\mu} H_{\mu},
$$

where the leptonic and hadronic currents are,

$$
L^{\mu} = \bar{u}_{\tau}(p_1) \gamma^{\mu} (1 - \gamma_5) v_{\nu_{\tau}}(p_2),
$$

\n
$$
H_{\mu} = \langle \Lambda_c | \bar{c} \gamma_{\mu} (1 - \gamma_5) b | \Lambda_b \rangle.
$$

The hadronic current is expressed in terms of six form factors,

$$
\langle \Lambda_c | \bar{c} \gamma_\mu b | \Lambda_b \rangle = \bar{u}_{\Lambda_c} (f_1 \gamma_\mu + i f_2 \sigma_{\mu\nu} q^\nu + f_3 q_\mu) u_{\Lambda_b},
$$

$$
\langle \Lambda_c | \bar{c} \gamma_\mu \gamma_5 b | | \Lambda_b \rangle = \bar{u}_{\Lambda_c} (g_1 \gamma_\mu \gamma_5 + i g_2 \sigma_{\mu\nu} q^\nu \gamma_5 + g_3 q_\mu \gamma_5) u_{\Lambda_b}.
$$

Here $q = p_{\Lambda_b} - p_{\Lambda_c}$ is the momentum transfer and the form factors are functions of q^2 .

 Ω

Heavy Quarks and form Factors

- **In the heavy quark limit,** $m_{b,c} \rightarrow \infty$ **there is only one independent form** factor.
- $f_1 = g_1$, $f_2 = g_2 = f_3 = g_3 = 0$.
- In the "light" charm case, $m_b \rightarrow \infty$ and m_c finite there are only two independent form factors.
- $g_1 = f_1$, $g_2 = f_2$ and $f_3 = g_3 = f_2$ (good at small recoil).
- Time component helicity amplitudes are sensitive to lepton mass effects. In $B\to D^{(*)}l\bar{\nu}_l$ decays these helicity amplitudes and the corresponding form factors cannot be measured. In the Λ_b case, the measurement of form factors from $\Lambda_b \to \Lambda_c l \bar{\nu}_l$ is enough to construct the time component helicity amplitudes in the $m_b \to \infty$ but finite m_c limit. as these amplitudes depend on $f_1(g_1)$ and $f_3(g_3)$.

KORKA ERKER ADA YOUR

When considering NP operators we will use the following relations obtained by using the equations of motion.

$$
\langle \Lambda_c | \bar{c} b | \Lambda_b \rangle = \bar{u}_{\Lambda_c} (f_1 \frac{\rlap{\hspace{0.1cm}q}_m}{m_b - m_c} + f_3 \frac{q^2}{m_b - m_c}) u_{\Lambda_b},
$$

$$
\langle \Lambda_c | \bar{c} \gamma_5 b | \Lambda_b \rangle = \bar{u}_{\Lambda_c} (-g_1 \frac{\rlap{\hspace{0.1cm}q}_\gamma}{m_b + m_c} - g_3 \frac{q^2 \gamma_5}{m_b + m_c}) u_{\Lambda_b}.
$$

We will define the following observable,

$$
R_{\Lambda_b} = \frac{BR[\Lambda_b \to \Lambda_c \tau \bar{\nu}_{\tau}]}{BR[\Lambda_b \to \Lambda_c \ell \bar{\nu}_{\ell}]}.
$$

Here ℓ represents μ or e. We will also define the ratio of differential distributions,

$$
B_{\Lambda_b}(q^2) = \frac{\frac{d\Gamma[\Lambda_b\to\Lambda_c\tau\bar{\nu}_\tau]}{dq^2}}{\frac{d\Gamma[\Lambda_b\to\Lambda_c\ell\bar{\nu}_\ell]}{dq^2}}.
$$

Helicity Amplitudes

The decay $\Lambda_b\to\Lambda_c\tau\bar\nu_\tau$ proceeds via $\Lambda_b\to\Lambda_cW^*($ off-shell W) followed by $W^* \to \tau \bar{\nu}_\tau$. The full decay process is $\Lambda_b \to \Lambda_c (\to \Lambda_s \pi) W^* (\to \tau \bar{\nu}_\tau)$ One can analyze the decay in terms of helicity amplitudes (hep-ph 9406359) which are given by

$$
H_{\lambda_2\lambda_W} = M_\mu(\lambda_2) \epsilon^{*\mu}(\lambda_W), \tag{4}
$$

where λ_2 , λ_W are the polarizations of the daughter baryon and the W-boson respectively and M_{μ} is the hadronic current for $\Lambda_b \to \Lambda_c$ transition. The helicity amplitudes can be expressed in terms of form factors and the NP couplings.

$$
H_{\lambda_{\Lambda_c},\lambda_w} = H_{\lambda_{\Lambda_c},\lambda_w}^V - H_{\lambda_{\Lambda_c},\lambda_w}^A,
$$

\n
$$
H_{\frac{1}{2}0}^V = (1 + g_L + g_R) \frac{\sqrt{Q_{-}}}{\sqrt{q^2}} \Big((M_1 + M_2) f_1 - q^2 f_2 \Big),
$$

\n
$$
H_{\frac{1}{2}0}^A = (1 + g_L - g_R) \frac{\sqrt{Q_{+}}}{\sqrt{q^2}} \Big((M_1 - M_2) g_1 + q^2 g_2 \Big),
$$

\n
$$
H_{\frac{1}{2}1}^V = (1 + g_L + g_R) \sqrt{2Q_{-}} \Big(f_1 - (M_1 + M_2) f_2 \Big),
$$

\n
$$
H_{\frac{1}{2}1}^A = (1 + g_L - g_R) \sqrt{2Q_{+}} \Big(g_1 + (M_1 - M_2) g_2 \Big),
$$

\n
$$
H_{\frac{1}{2}t}^V = (1 + g_L + g_R) \frac{\sqrt{Q_{+}}}{\sqrt{q^2}} \Big((M_1 - M_2) f_1 + q^2 f_3 \Big),
$$

\n
$$
H_{\frac{1}{2}t}^A = (1 + g_L - g_R) \frac{\sqrt{Q_{-}}}{\sqrt{q^2}} \Big((M_1 + M_2) g_1 - q^2 g_3 \Big),
$$

\n
$$
f_1^A = (1 + g_L - g_R) \frac{\sqrt{Q_{-}}}{\sqrt{q^2}} \Big((M_1 + M_2) g_1 - q^2 g_3 \Big),
$$

\n
$$
f_2^B = (1 + g_L - g_R) \frac{\sqrt{Q_{-}}}{\sqrt{q^2}} \Big((M_1 + M_2) g_1 - q^2 g_3 \Big),
$$

\n
$$
f_2^B = (1 + g_L - g_R) \frac{\sqrt{Q_{-}}}{\sqrt{q^2}} \Big((M_1 + M_2) g_1 - q^2 g_3 \Big),
$$

\n
$$
f_2^B = (1 + g_L - g_R) \frac{\sqrt{Q_{-}}}{\sqrt{q^2}} \Big((M_1 + M_2) g_1 - q^2 g_3 \Big),
$$

where $Q_{\pm}=(M_1\pm M_2)^2-q^2.$ -990 メロト メ都 トメ ヨ トメ ヨ ト 高 Alakabha Datta (UMiss) [New physics in baryonic](#page-0-0) $b \rightarrow c$ modes November 4, 2015 16 / 32

The scalar and pseudo-scalar helicities associated with the new physics scalar and pseudo-scalar interactions are

$$
H^{SP}_{1/2,0} = H^{P}_{1/2,0} + H^{S}_{1/2,0},
$$

\n
$$
H^{S}_{1/2,0} = g_{S} \frac{\sqrt{Q_{+}}}{m_{b} - m_{c}} \Big((M_{1} - M_{2}) f_{1} + q^{2} f_{3} \Big),
$$

\n
$$
H^{P}_{1/2,0} = -g_{P} \frac{\sqrt{Q_{-}}}{m_{b} + m_{c}} \Big((M_{1} + M_{2}) g_{1} - q^{2} g_{3} \Big).
$$

The parity related amplitudes are,

$$
H^{S}{}_{\lambda_{\Lambda_c},\lambda_{NP}} = H^{S}{}_{-\lambda_{\Lambda_c},-\lambda_{NP}},
$$

$$
H^{P}{}_{\lambda_{\Lambda_c},\lambda_{NP}} = -H^{P}{}_{-\lambda_{\Lambda_c},-\lambda_{NP}}.
$$

 \leftarrow

With the W boson momentum defining the positive z-axis for the decay process $(\Lambda_b \to \Lambda_c \tau^+ \nu_\tau)$, the twofold angular distribution can be written as

$$
\frac{d\Gamma(\Lambda_b \to \Lambda_c \tau^- \nu_\tau)}{dq^2 d(\cos \theta_l)} = \frac{G_F^2 |V_{cb}|^2 q^2 |\mathbf{p}_{\Lambda_c}|}{512\pi^3 M_1^2} \left(1 - \frac{m_l^2}{q^2}\right)^2
$$

$$
\left[A_1^{SM} + \frac{m_l^2}{q^2} A_2^{SM} + 2A_3^{NP} + \frac{4m_l}{\sqrt{q^2}} A_4^{Int}\right]
$$

$$
A_1^{5M} = 2\sin^2\theta_I(|H_{1/2,0}|^2 + |H_{-1/2,0}|^2) + (1 - \cos\theta_I)^2|H_{1/2,1}|^2
$$

$$
+ (1 + \cos\theta_I)^2|H_{-1/2,-1}|^2,
$$

$$
A_2^{SM} = 2\cos^2\theta_I(|H_{1/2,0}|^2 + |H_{-1/2,0}|^2) + \sin^2\theta_I(|H_{1/2,1}|^2 + |H_{-1/2,-1}|^2) + 2(|H_{1/2,t}|^2 + |H_{-1/2,t}|^2) - 4\cos\theta_I Re[(H_{1/2,t} (H_{1/2,0})^* + H_{-1/2,t}
$$

$$
A_3^{NP} = |H^{SP}{}_{1/2,0}|^2 + |H^{SP}{}_{-1/2,0}|^2,
$$

\n
$$
A_4^{Int} = -\cos\theta_I Re[(H_{1/2,0} (H^{SP}{}_{1/2,0})^* + H_{-1/2,0} (H^{SP}{}_{-1/2,0})^*)]
$$

\n
$$
+Re[(H_{1/2,t} (H^{SP}{}_{1/2,0})^* + H_{-1/2,t} (H^{SP}{}_{-1/2,0})^*)].
$$

 θ_I is the angle of the lepton in the W^* rest fra[me.](#page-16-0) Ω Alakabha Datta (UMiss) [New physics in baryonic](#page-0-0) b \rightarrow c modes November 4, 2015 18 / 32

After integrating out $cos\theta_I$,

$$
\frac{d\Gamma(\Lambda_b \to \Lambda_c \tau^- \nu_\tau)}{dq^2} = \frac{G_F^2 |V_{cb}|^2 q^2 |\mathbf{p}_{\Lambda_c}|}{192\pi^3 M_1^2} \left(1 - \frac{m_l^2}{q^2}\right)^2
$$

$$
\left[B_1^{SM} + \frac{m_l^2}{2q^2} B_2^{SM} + \frac{3}{2} B_3^{NP} + \frac{3m_l}{\sqrt{q^2}} B_4^{Int}\right]
$$

where,

$$
B_1^{SM} = |H_{1/2,0}|^2 + |H_{-1/2,0}|^2 + |H_{1/2,1}|^2 + |H_{-1/2,-1}|^2,
$$

\n
$$
B_2^{SM} = |H_{1/2,0}|^2 + |H_{-1/2,0}|^2 + |H_{1/2,1}|^2 + |H_{-1/2,-1}|^2
$$

\n
$$
+ 3(|H_{1/2,t}|^2 + |H_{-1/2,t}|^2),
$$

\n
$$
B_3^{NP} = |H_{1/2,0}^{SP}|^2 + |H_{-1/2,0}^{SP}|^2,
$$

\n
$$
B_4^{Int} = Re[(H_{1/2,t} (H^{SP}_{1/2,0})^* + H_{-1/2,t} (H^{SP}_{-1/2,0})^*)].
$$
\n(8)

 B_1 SM, B_2 SM, B_3 ^{NP}, and B_4 ^{Int} are the standard model non-spin-flip, standard model spin-flip, new physics, and inter[fer](#page-17-0)e[n](#page-19-0)[ce](#page-17-0) [t](#page-18-0)[e](#page-31-0)[r](#page-9-0)[m](#page-10-0)[s](#page-10-0)[,](#page-31-0) [re](#page-9-0)s[p](#page-30-0)e[ct](#page-0-0)[ive](#page-31-0)ly and state (UMiss) Alahabila Datta (Olviiss) (Barrick Billysic. Alakabha Datta (UMiss) [New physics in baryonic](#page-0-0) b \rightarrow c modes November 4, 2015 19 / 32 $B \rightarrow c$ modes November 4, 2015 19 /

The four fold angular distribution contains CP violating terms proportional to sin χ .

$$
C_1^{SM} = 2\sin^2\theta_I \Big((1 + \alpha\cos\theta_s)|H_{1/2,0}|^2 + (1 - \alpha\cos\theta_s)|H_{-1/2,0}|^2 \Big) + (1 + \cos\theta_I)^2 (1 - \alpha\cos\theta_s)|H_{-1/2,-1}|^2 + (1 - \cos\theta_I)^2 (1 + \alpha\cos\theta -\frac{4\alpha}{\sqrt{2}}\sin\theta_I\sin\theta_s\cos\chi \Big((1 + \cos\theta_I)Re[H_{1/2,0}(H_{-1/2,-1})^*] + (1 - \cos\theta_I)Re[H_{-1/2,0}(H_{1/2,1})^*] \Big) -\frac{4\alpha}{\sqrt{2}}\sin\theta_I\sin\theta_s\sin\chi \Big((1 + \cos\theta_I)Im[H_{1/2,0}(H_{-1/2,-1})^*] -(1 - \cos\theta_I)Im[H_{-1/2,0}(H_{1/2,1})^*] \Big).
$$

In the SM helicity amplitudes $H_i \propto V_{cb}$ and so $\textit{Im}(H_i H_j^*) = 0.$ Hence non zero such terms indicate new physics independent of form factor uncertainties. (Datta and Duraisamy, JHEP 13[09](#page-18-0) [\(2](#page-20-0)[0](#page-18-0)[13](#page-19-0)[\)](#page-20-0) [0](#page-10-0)[5](#page-30-0)[9](#page-31-0)[\)](#page-9-0) Ω

Results BaBar only

We first present the constraints on the NP couplings from $R(D^{(\ast)}).$

Figure: The figures show the constraints on the NP couplings taken one at a time at the 95% CL limit. When the couplings contribute to both $R(D)$ and $R(D^*)$ the green contour indicates constraint from $R(D^*)$ and blue from $R(D)$.

Results, Updated

We first present the constraints on the NP couplings from $R(D^{(\ast)}).$

Figure: The figures show the constraints on the NP couplings taken one at a time at the 95% CL limit. When the couplings contribute to both $R(D)$ and $R(D^*)$ the green contour indicates constraint from $R(D^*)$ and blue from $R(D)$.

Results

In the following we present the results for R_{Λ_b} , $\frac{d\Gamma}{dq^2}$ and $B_{\Lambda_b}(q^2)$. For the first and third observables we use different models of the form factors given in Table. For the differential distribution $\frac{d\Gamma}{d q^2}$ we present the average result over the form factors.

Table: Values of R_{Λ_b} in the SM

Table: Values of R_{Λ_b} in the SM

Results, Vector Operators

We start with the case where only g_L is present. In this case the NP has the same structure as the SM and the SM amplitude gets modified by the factor $(1 + g_L)$. Hence, if only g_L is present then

$$
R_{\Lambda_b} = R_{\Lambda_b}^{SM} |1 + g_L|^2.
$$

The shape of the differential distribution $\frac{d\Gamma}{dq^2}$ is the same as the SM. If only g_R is present then

$$
H^V_{\lambda_{\Lambda_c},\lambda_w} = (1+g_R) \left[H^V_{\lambda_{\Lambda_c},\lambda_w} \right]_{SM},
$$

$$
H^A_{\lambda_{\Lambda_c},\lambda_w} = (1-g_R) \left[H^A_{\lambda_{\Lambda_c},\lambda_w} \right]_{SM}.
$$

For the allowed g_R couplings we find R_{Λ_b} is greater than the SM value. The shape of the differential distribution $\frac{d\Gamma}{dq^2}$ is similar to the SM.

 Ω

Results, Scalar Operators

We now move to the case when only $g_{S,P}$ are present.

$$
R_{\Lambda_b} = R_{\Lambda_b}^{SM} + |g_P|^2 A_P + 2Re(g_P)B_P,
$$

\n
$$
R_{\Lambda_b} = R_{\Lambda_b}^{SM} + |g_S|^2 A_S + 2Re(g_S)B_S.
$$

The quantities $A_{S,P}$ and $B_{S,P}$ depend on masses and form factors and they are positive. However, given the constraints on $g_{S,P}$ we can make R_{Λ_b} only slightly less than the SM value.

The shape of the differential distribution $\frac{d\Gamma}{dq^2}$ can be different from the SM.

Max and Min deviations from SM, BaBar

Table: Minimum and Maximum values for the averaged $R_{\Lambda_b}.$

For the lattice form factors,the range of allowed values is larger. Large effects are possible, beyond the form factor uncertainties. (Remember R_{Λ} =0.29 (our model), 0.33 \pm 0.01(lattice).)

Max and Min deviations from SM, Updated

Table: Minimum and Maximum values for the averaged $R_{\Lambda_b}.$

For the lattice form factors,the range of allowed values is larger. Large effects are possible, beyond the form factor uncertainties. (Remember R_{Λ} =0.29 (our model), 0.33 \pm 0.01(lattice).)

Differential Distribution

Alakabha Datta (UMiss) [New physics in baryonic](#page-0-0) b \rightarrow c modes November 4, 2015 29 / 32

 \leftarrow \Box

금 > '< 금 >

重

Alakabha Datta (UMiss) [New physics in baryonic](#page-0-0) b \rightarrow c modes November 4, 2015 30 / 32

÷.

4 母 8 4

4 日下

 \rightarrow \rightarrow \equiv \rightarrow

活

Other Observables

We can use the other helicity angles to construct additional observables:

Using the leptonic angle we can define:

$$
A_{FB\Lambda_b}(q^2) = \frac{\left(\int_0^1 - \int_{-1}^0\right)d\cos\theta_l\frac{d\Gamma}{dq^2d\cos\theta_l}}{\frac{d\Gamma}{dq^2}}.
$$

• We can observe the τ polarization:

$$
P_L^{*\tau}(q^2) = \frac{\frac{d\Gamma[\lambda_{\tau}=-1/2]}{dq^2} - \frac{d\Gamma[\lambda_{\tau}=1/2]}{dq^2}}{\frac{d\Gamma}{dq^2}}.
$$

• We can look at the azimuthal distribution and the Λ_c polarization

$$
\frac{d^2\Gamma^{(2)}}{dq^2d\chi},\frac{d^2\Gamma^{(2)}}{dq^2d\cos\theta_B}.
$$

 Ω

Conclusions and Outlook

- Hints of new physics in $\bar B\to D^{*+}\tau^-\bar\nu_\tau$ and $\bar B\to D^+\tau^-\bar\nu_\tau.$
- Another mode to look for these effects are in $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ decays as the quark level transition is the same.

Large deviations from the SM are possible in $R_{\Lambda_b}=\frac{BR[\Lambda_b\to\Lambda_c\tau\bar\nu_\tau]}{BR[\Lambda_b\to\Lambda_c\ell\bar\nu_\ell]}$ $\frac{BN[N_b\rightarrow N_cTU_{\tau}]}{BR[\Lambda_b\rightarrow \Lambda_c\ell\bar{\nu}_\ell]}$ and $B_{\Lambda_b}(q^2) =$ $rac{d\Gamma[\Lambda_b\to\Lambda_c\tau\bar{\nu}_\tau]}{dq^2}$ $rac{d\Gamma[\Lambda_b\to\Lambda_c \ell\bar{\nu}_\ell]}{dq^2}$. Effects are beyond form factor uncertainties.

- Additional observables including the additional helicity angles can be constructed to probe new physics.
- Azimuthal distributions can probe new sources of CP violation cleanly.
- Experimental measurements of the rates and differential distribution for $\Lambda_b \to \Lambda_c \ell \bar{\nu}_{\ell}$ and $\Lambda_b \to \Lambda_c \tau \bar{\nu}_{\tau}$ are desirable.