Search for hidden-sector bosons in $B^0 \rightarrow K^{*0} \chi(\rightarrow \mu^+ \mu^-)$ decays

4th November 2015

Mitesh Patel (Imperial College London) On behalf of the LHCb collaboration

Imperial College London

Introduction

- Lack evidence for dark matter and various cosmic ray anomalies → renewed interest in "hidden sector theories"
- Hidden sector particles singlets wrt Standard Model gauge interactions → very weak interactions
 - Can still get production (and decay) of hidden-sector particle, χ , by mixing hidden sector particle with some SM "portal particle" e.g. H, Z, γ , ν
- Previous searches made at a wide range of experiments
 - Stringent constraints on hidden-sector γ and ν portals
 - Significantly weaker constraints on axial-vector and scalar portals

$B^0 \rightarrow K^{*0} \chi(\rightarrow \mu^+ \mu^-)$ decays

- The B⁰→K^{*0}μ⁺μ⁻ final state lends itself well to searches for χ bosons with χ→μ⁺μ⁻
 - b→s transition mediated by top quark loop enhanced sensitivity to χ with large top coupling e.g. via mixing with the Higgs sector
 - $K^{*0} \rightarrow K^{+}\pi^{-}$ gives entirely charged final state and helps with vertex reconstruction
 - Can reduce backgrounds to a low level
 - Mass range accessible $2m(\mu) < m(\chi) < m(B^0)-m(K^{*0})$
 - Can search for long-lived χ , giving displaced $\mu^+\mu^-$

Search Strategy

- Blind analysis
- Scan m_{test} in steps of $\frac{1}{2} \sigma m(\mu^+\mu^-)$
- Constrain m(K⁺π⁻μ⁺μ⁻) to the known B⁰ mass
 → improves m(μ⁺μ⁻) resoln to 1-7 MeV
- Signal region, $|m(\mu^+\mu^-) - m(\chi)| < 2\sigma m(\mu^+\mu^-)$
- Background region > 3σ from m(χ)
- Wide resonances have no impact
- Narrow resonances (ω , ϕ , J/ ψ , ψ (2S) and ψ (3770)) vetoed

Search Strategy

- At each m_{test} form test statistic, profile likelihood ratio of hypotheses with and without a signal
- Consider two regions of dimuon lifetime, $\sigma \tau(m_{test})$ (0.2-1ps)
 - Prompt region : $|\tau (\mu^+ \mu^-)| < 3\sigma [\tau (\mu^+ \mu^-)]$
 - Displaced region : $|\tau (\mu^+\mu^-)| > 3\sigma [\tau (\mu^+\mu^-)]$

Likelihood formed from product – no assumption made about $\tau(\chi)$

 Fraction of toys that have a minimum local p-value less than value observed in data used to compute global p-value

[JINST 10 (2015) P06002]

Selection and normalisation

- Use multivariate analysis to reduce backgrounds uBoost technique gives response that is nearly independent of $\tau(\chi)$ [JINST 8 (2013) P12013]
- Measure B(B⁰ \rightarrow K^{*0} χ (\rightarrow µ⁺µ⁻)) relative to B(B⁰ \rightarrow K^{*0}µ⁺µ⁻)
 - Use prompt region with $1.1 < m^2(\mu^+\mu^-) < 6.0 \text{ GeV}^2$

Unblinded results

• Unblinded $m(\mu^+\mu^-)$ (for candidates in the B mass window)

- Most significant local excess occurs for $m(\chi) = 253 \text{ MeV} \text{in}$ prompt region 11 candidates are seen with 6.2 expected
- p-value of the no-signal hypothesis is $80\% \rightarrow no dark boson !$

Branching fraction limits

- Spin of χ determines angular distribution and hence signal efficiency
 - Set upper limits assuming spin-zero. For $\tau(\chi) < 10$ s : 0.005-0.050
 - For spin-one, limits would be 10-20% better

[Phys. Rev. Lett. 115 (2015) 161802]

Branching fraction limits

- Spin of χ determines angular distribution and hence signal efficiency
 - Set upper limits assuming spin-zero. For $\tau(\chi)$ <10ps : 0.005-0.050
 - For spin-one, limits would be 10-20% better

 Most stringent constraints to date on many theories that predict the existence of additional low-mass bosons

Constraints on models

- Use limits to look at regions excluded for two example models
 - Axion model [Freytsis, Ligeti, Thaler, Phys. Rev. D81(2010)034001]
 - MSSM-like two Higgs doublet model with axion-like particles
 - Limits general but, for ease of presentation, show in limit of large ratio of Higgs-doublet vacuum expectation values, tan β>3, for charged-Higgs masses m(h) = 1 and 10 TeV

Constraints on models

- Use limits to look at regions excluded for two example models
 - Inflaton model [Bezrukov, Gorbunov, Phys.Lett. B736 (2014) 494]
 - Hypothesizes that a scalar field χ was responsible for inflation of the early Universe and may have generated the baryon asymmetry
 - Associated "inflaton" particle expected to have mass $270 < m(\chi) < 1800 \text{ MeV}$

The Future

- New data has ~double cross-section for b- and c-hadrons
- Can add "downstream" $\mu^+\mu^-$ candidates
- Hope to accumulate 5fb⁻¹ during Run-II and then use upgraded detector to accumulate 15fb⁻¹ during Run-III
- Extrapolate limit on scalar mixing angle

Other channels

- Previous searches for Majorana neutrinos
 - $B^- \rightarrow \pi^+ \mu^- \mu^-$ [Phys. Rev. Lett. 112 (2014) 131802]
 - $D^{-}_{(s)} \rightarrow \pi^{+} \mu^{-} \mu^{-}$ [Phys. Lett. B 724 (2013) 203]

will be updated – working to improve techniques

• Also investigating our sensitivity to the Hyper CP anomaly: 3 muon events around 214 MeV in $\Sigma^+ \rightarrow p\mu^+\mu^-$

Conclusions

- Search for dark bosons, χ , in $B^0 \rightarrow K^{*0}\chi(\rightarrow \mu^+\mu^-)$ decays
 - Sensitive to both prompt and displaced χ
 - No evidence for any dark boson seen
 - − Set limits on B($B^0 \rightarrow K^{*0} \chi(\rightarrow \mu^+ \mu^-)$) at

<10⁻⁹ level for τ =0ps

<10⁻⁷ level for τ =1000ps

- Most stringent constraints to date on many theories that predict the existence of additional low-mass bosons
- Searches statistically limited, will improve with new data

Backup